Skip to main content
Log in

OFDM Error Floor Prediction in a Small-Time-Dispersion Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a novel error floor prediction model is proposed for estimating the peak performance of the OFDM transmission in a small-time-dispersion environment—typically indoor. The obtained analytical formula involves both the accordingly modified common channel time-dispersion parameters such as the rms delay spread, but distinct for the advanced and delayed multipath echoes (with respect to the chosen sampling instant), as well as the OFDM signal-specific parameters. The validity of the model was confirmed by the results of the corresponding Monte-Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Prasad, R. (2004). OFDM for wireless communications systems. Boston, Mass: Artech House.

    Google Scholar 

  2. Tan, P., & Beaulieu, N. C. (2008). Effect of channel estimation error on bit error probability in OFDM systems over Rayleigh and Ricean fading channels. IEEE Transactions on Communications, 56(4), 675–685.

    Google Scholar 

  3. Goldsmith, A. (2005). Wireless communications, 1st edn. Cambridge: Cambridge University Press, Stanford University.

    Book  Google Scholar 

  4. Lipovac, V. (2000). On the error floor of MSK signal transmission over a multipath channel with small time dispersion. IEEE Transactions on Vehicular Technology, 49(1), 117–129.

    Google Scholar 

  5. Lipovac, V. (2004). Impact of transmitter and receiver filtering on the phase and error floor of MSK signal indoor transmission. European Transactions on Telecommunications, 15(1), 49–54.

    Article  Google Scholar 

  6. Montojo, J. I., & Milstein, L. B. (2009). Effects of imperfections on the performance of OFDM systems. IEEE Transactions On Communications, 57(7), 2060–2070.

    Article  Google Scholar 

  7. Karande, S., Parrikar, U., Misra, K., & Radha, H. (2006). On modeling of 802.11b residue errors. CISS.

  8. Stuber, G. L., Barry, J. R., McLaughlin, S. W., Li, Y. G., Ingram, M. A., & Pratt, T. G. (2004). Broadband MIMO-OFDM wireless communications. Proceedings of IEEE, 92(2), 271–294.

    Article  Google Scholar 

  9. Ozdemir, M. K., & Arslan, H. (2007). Channel estimation for wireless OFDM systems. IEEE Communication Surveys and Tutorials, Second Quarter, 9(2), 18–48.

    Article  Google Scholar 

  10. Lai, H. Q., Siriwongpairat, W. P., & Ray Liu, K. J. (2007). Performance analysis of multiband OFDM UWB system with imperfect synchronization and intersymbol interference. Selected Topics in Signal Processing, Special Issue Performance Limits Ultra-Wideband Systems, 1(3), 521–534.

    Google Scholar 

  11. Montojo, J. I., & Milstein, L. B. (Jan. 2010). Channel estimation for non-ideal OFDM systems. IEEE Transactions On Communications, 58(1), 146–156.

    Google Scholar 

  12. Zorzi, M., & Rao, R. R. (1997). On the statistics of block errors in bursty channels. IEEE Transactions on Communications, 45(6), 660–667.

    Google Scholar 

  13. Shen, C., Liu, T., & Fitz, M. (2008). Aggressive transmission with ARQ in quasi-static fading channels. In Proceedings of IEEE international conference communications, pp. 1092–1097.

  14. Shen, C., Liu, T., & Fitz, M. (2009). On the average rate performance of hybrid-ARQ in quasi-static fading channels. IEEE Transactions on Communications, 57(11), 3339–3352.

    Article  Google Scholar 

  15. Shakkottai, S., Rappaport, T. S., & Karlsson, P. C. (2003). Cross-layer design for wireless networks. IEEE Communications Magazine, 41(10), 74–80.

    Google Scholar 

  16. Khayam, S. A., & Radha, H. (2005). Linear-complexity models for wireless MAC-to-MAC channels. ACM Wireless Networks (WINET), 11(5), 543–555.

    Google Scholar 

  17. Khayam, S. A., & Radha, H. (2005). On long-range dependence in wireless residual channels. CISS.

  18. Balakrishnan, H., Padmanabhan, V.N., Seshan, S., & Katz, R.H. (1997). A comparison of mechanisms for improving TCP performance over wireless links. IEEE/ACM Transactions on Networking, 5(6), 756–769.

    Google Scholar 

  19. Schober, H., & Jondral, F. (2002). Delay spread estimation for OFDM based mobile communication systems. In Proceedings of European wireless conference, Florence, Italy, pp. 625–628.

  20. Athaudage, C., & Jayalath, A. (Dec. 2004). Delay-spread estimation using cyclicprefix in wireless OFDM systems. IEE Proceedings Communications, 151(6), 559–566.

    Google Scholar 

  21. Sheu, C.-R., Tseng, M.-C., Chen, C.-Y., & Lin, H.-P. (2007). A low-complexity concatenated ICI cancellation scheme for high-mobility OFDM systems. In WCNC: Proceedings of IEEE wireless communications and networking conference, pp. 1389–1393.

  22. Polyanin, A. D., & Manzhirov, A. V. (1998). Handbook of integral equations. Boca Raton: CRC Press.

    Book  MATH  Google Scholar 

  23. Prudnikov, A. P., et al. (1990). Integrals and series. Langhorne: Gordon and Briech Science Publishers.

    MATH  Google Scholar 

  24. Wolfram Web Resource. http://mathworld.wolfram.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Lipovac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipovac, A. OFDM Error Floor Prediction in a Small-Time-Dispersion Channel. Wireless Pers Commun 75, 645–663 (2014). https://doi.org/10.1007/s11277-013-1383-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1383-6

Keywords

Navigation