Skip to main content
Log in

Reward-Based Radio Interface Selection of Hybrid 4G UMTS and LTE Communications for Fast Cloud Accesses

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

For achieving fast accesses the cloud’s big data through mobile smart node, an extreme high data rate for the forwarding link under high-mobility wireless communications is necessary. 3GPP thus specifies LTE/LTE-Advanced specifications as the 4G system to cooperate with the existing UMTS system. To balance loads among different communication interfaces in the hybrid cellular system is one of the most important issues that should be addressed for achieving efficient radio resource allocations. In a shared packet service, the 3GPP UMTS adopts the VSF-OFCDM interface to allocate orthogonal codes of an OVSF code tree in two-dimension spreading of the time and frequency domains. However, UMTS suffers from high packet loss rate and high bandwidth waste rate. In 4G, although the LTE/LTE-Advanced interface offers a high data rate, it suffers from unbalanced loads and moderate reward. This paper thus proposes an adaptive radio interface selection for balancing loads between the UMTS and LTE/LTE-Advanced interfaces according to various interference and mobility environments. Numerical results indicate that the proposed approach outperforms other approaches in fairness, FRL, utilization and call blocking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Meik, K. (2010). LTE-Advanced technology introduction white paper. Munich: Rohde & Schwarz.

    Google Scholar 

  2. TR 36.913 Version 10.0.0. (2011, March). Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced). 3GPP pp. 4–15.

  3. Maeda, N., Kishiyama, Y., Higuchi, K., Atarashi, H., & Sawahashi, M. (2003). Experimental evaluation of throughput performance in broadband packet wireless access based on VSF-OFCDM and VSF-CDMA. IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 1, 6–11.

    Google Scholar 

  4. 3GPP. [Online]. Available: http://www.3gpp.org.

  5. Li, Q., Hu, R.Q., Qian, Y., & Wu, G. (2012, April). Cooperative Communications for Wireless Networks: Techniques and Applications in LTE-advanced Systems. IEEE Wireless Communications, 19(2) 22–29.

    Google Scholar 

  6. Abeta, S. (2010, November). Toward LTE commercial launch and future plan for LTE enhancements (LTE-Advanced). 2010 IEEE International Conference on Communication Systems (ICCS) (pp. 146–150), Singapore.

  7. Shantha Kumar, K. N., Madhu, K., Paruchuri, C., & Dinesh, M. (2009). LTE-Advanced: future of mobile broadband. TATA Consultancy Services, 28(3), 1380–1408.

    Google Scholar 

  8. Gesbert, D., Hanly, S., Huang, H., Simeone, O., & Wei, Y. (2010). Multi-cell MIMO cooperative networks: A new look at interference. IEEE Journal on Selected Areas in Communications, 28(3), 1380–1408.

    Article  Google Scholar 

  9. TR 36.912 Version 10.0.0. (2011, March). Feasibility study for further advancements for E-UTRA (LTE-Advanced). 3GPP pp. 6–61.

  10. Qinghua, L., Guangjie, L., Wookbong, L., Moon-il, L., Mazzarese, D., Clerckx, B., et al. (2010). MIMO techniques in WiMAX and LTE: A feature overview. IEEE Communications Magazine, 48(5), 86–92.

    Article  Google Scholar 

  11. Zhou, Y., Ng, T.-S., Wang, J.-Z., Higuchi, K., & Sawahashi, M. (2008). OFCDM: A promising broadband wireless access technique. IEEE Communications Magazine, 46(3), 38–49.

    Article  Google Scholar 

  12. Kuo, C.-C., Sheen, W.-H., Chang, C.-J., & Hsiao, C.-L. (2008). On the transmitter-based preprocessing for 2-D OFDM-CDMA forward-link systems over time-varying Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 57(3), 1968–1974.

    Article  Google Scholar 

  13. Zhou, Y., Wang, J., & Ng, T.-S. (2008). Downlink transmission of broadband OFCDM systems-part V: Code assignment. IEEE Transactions on Vehicular Technology, 7(11), 4546–4557.

    Google Scholar 

  14. Chang, B.-J., & Wu, C.-H. (2009). Adaptive load balancing MDP-based approach of two-dimensional spreading for VSF-OFCDM in 4G next-generation cellular communications. IEEE Transactions on Vehicular Technology, 58(3), 1143–1156.

    Article  Google Scholar 

  15. Hwang, R.-H., Chang, B.-J., Chen, M.-X., & Tsai, K.-C. (2006). An efficient adaptive grouping for single code assignment in WCDMA Mobile Networks. Wireless Personal Communications, 39(1), 41–61.

    Google Scholar 

  16. Chang, B.-J., Chen, M.-X., Wang, R.-H., & Tsat, K.-C. (2006). Single code-based dynamic grouping with cycle interleaving algorithm for reducing waste rate in WCDMA Cellular Networks. IEICE Transactions on Communications, 89(12), 3306–3317.

    Article  Google Scholar 

  17. Tseng, Y.-C., & Chao, C.-M. (2002). Code placement and replacement strategies for wideband CDMA OVSF code tree management. IEEE Transactions on Mobile Computing, 1(4), 293–302.

    Article  Google Scholar 

  18. Cheng, S.-T., & Hsieh, M.-T. (2005). Design and analysis of time-based code allocation schemes in W-CDMA systems. IEEE Transactions on Mobile Computing, 4(6), 604–615.

    Article  Google Scholar 

  19. Chao, C.-M., Tseng, Y.-C., & Wang, L.-C. (2005). Dynamic bandwidth allocation for multimedia traffic with rate guarantee and fair access in WCDMA systems. IEEE Transactions on Mobile Computing, 4(5), 420–429.

    Article  Google Scholar 

  20. Park, J.-S., Huang, L., & Kuo, C. C. J. (2008). Computationally efficient dynamic code assignment schemes with call admission control (DCA-CAC) for OVSF-CDMA systems. IEEE Transactions on Vehicular Technology, 57(1), 286–296.

    Article  Google Scholar 

  21. Tsai, Y.-R., & Lin, L.-C. (2009). Quality-based OVSF code assignment and reassignment strategies for WCDMA systems. IEEE Transactions on Vehicular Technology, 50(2), 1027–1031.

    Article  MathSciNet  Google Scholar 

  22. Chang, B.-J., & Chang, P.-S. (2006). Multicode-based WCDMA for reducing waste rate and reassignments in mobile cellular communications. Computer Communications, 29(11), 1948–1958.

    Article  Google Scholar 

  23. Yang, Y., & Yum, T. S. P. (2005). Multicode multirate compact assignment of OVSF codes for QoS differentiated terminals. IEEE Transactions on Vehicular Technology, 54(6), 2114–2124.

    Article  Google Scholar 

  24. Saini, D. S., & Upadhyay, M. (2009). Multiple rake combiners and performance improvement in 3G and beyond WCDMA systems. IEEE Transactions on Vehicular Technology, 58(7), 3361–3370.

    Article  Google Scholar 

  25. Ferng, H. W., Chin, H.-L., Shiung, D., & Chen, Y.-T. (2005). An OVSF code tree partition policy for WCDMA systems based on the multi-code approach. 2005 IEEE 62nd Vehicular Technology Conference, 2, 1212–1216.

    Google Scholar 

  26. Saini, D. S., Hastir, V., & Sood, M. (2009, March). Multi code assignment and reduction in code rate wastage for 3G and beyond WCDMA systems. IEEE International Advance Computing Conference, (pp. 946–951), Patiala, India.

  27. Chang, W.-Y., Ouyang, W., Wang, C.-Y., Liu, M.-T., & Chang, Y.-W. (2010, June). Graph model for OVSF code placement. 2010 5th International Conference on Future Information Technology (pp. 1–6), Changzhou, China.

  28. Balyan, V., & Saini, D. S. (2010, October). An efficient multi code assignment scheme to reduce call establishment delay for WCDMA Networks. 2010 1st International Conference on Parallel Distributed and Grid Computing (PDGC), (pp. 278–283), Solan, India.

  29. Nemanja, V., Jordi, P.-R., Oriol, S., & Ramon, A. (2011). Reinforcement learning for joint radio resource management in LTE-UMTS scenarios. Computer Networks, 55(7), 1487–1497.

    Article  Google Scholar 

  30. Amir, S., & Mohammad, S.-B. (2010, April). Multi-user time-frequency Downlink Scheduling and resource allocation for LTE Cellular Systems. 2010 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1–6), Sydney, Australia.

  31. Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., & Thomas, T. (2010). LTE-Advanced: Next-generation wireless broadband technology. IEEE Wireless Communications, 17(3), 10–22.

    Article  Google Scholar 

  32. Gessner, C. (2009, September). UMTS Long Term Evolution (LTE) Technology Introduction, Rohde & Schwarz, (pp. 3–53), Munich, Germany.

  33. TS 36.221 Version 10.1.0. (2011, March). Physical channels and modulation. 3GPP pp. 6–101.

  34. TS 36.213 Version 10.1.0. (2011, March). Physical layer procedures. 3GPP pp. 5–112.

  35. TS 25.101 Version 10.1.0. (2011, April). User Equipment (UE) radio transmission and reception (FDD). 3GPP pp. 11–226.

  36. TR 25.922 Version 7.1.0. (2007, March). Radio resource management strategies (Release 7). 3GPP pp. 7–91.

  37. Tao, X., Xu, X. & Cui, Q. (2012) An Overview of Cooperative Communications. IEEE Communications Magazine, 50(6) 65–71.

    Google Scholar 

  38. Chang, B.-J., & Hwang, R.-H. (2004). Performance analysis for hierarchical multirate loss networks. IEEE/ACM Transactions on Networking, 12(1), 187–199.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-Jye Chang.

Additional information

This research was supported in part by the National Science Council of Taiwan, ROC, under Grants: NSC-101-2221-E-224-021-MY2, NSC-101-2221-E-224-022-MY3 and NSC-102-2221-E-252-005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, BJ., Liang, YH. & Cao, KX. Reward-Based Radio Interface Selection of Hybrid 4G UMTS and LTE Communications for Fast Cloud Accesses. Wireless Pers Commun 76, 675–691 (2014). https://doi.org/10.1007/s11277-013-1399-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1399-y

Keywords

Navigation