Skip to main content

Advertisement

Log in

Energy Efficient Relay Placement in Dual Hop 802.15.4 Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

IEEE 802.15.4 has emerged as a popular standard for short range wireless sensor networks used in industrial, military, health, and environmental sectors. The limited lifetime of such networks is one of the critical design challenges. This paper examines the how relaying through intermediate sensor nodes can enhance the lifetime of an 802.15.4 network. In particular, novel energy consumption models for both AF and DF relays have been developed. Different relay gain scaling mechanisms and forwarding strategies under each of the relay categories were also considered and their energy efficiencies were compared. For every relaying protocol, it was found that there exists an optimum location where energy saving is maximum and this location is not necessarily different for different modes. In summary, it has been observed that the optimum location for AF relays is the equidistant point from source and destination. In contrast, the optimal location for DF relays is closer to source. The effect of different PHY level (outage probability, path loss) and MAC level parameters (frame length) on the energy efficiency are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zheng, J., & Lee, M. J. (2004). Will IEEE 802.15.4 make ubiquitous networking a reality?: A discussion on a potential low power, low bit rate standard. IEEE Communications Magazine, 42(6), 140–146.

    Article  Google Scholar 

  2. Park, T. R., & Lee, M. J. (2008). Power saving algorithms for wireless sensor networks on IEEE 802.15.4. IEEE Communications Magazine, 46(6), 148–155.

    Article  Google Scholar 

  3. Mraz, L., Cervenka, V., Komosny, D., & Simek, M. (2013). Comprehensive performance analysis of ZigBee technology based on real measurements. Wireless Personal Communications, 71(4), 2783–2803.

    Article  Google Scholar 

  4. Ouni, S., & Ayoub, Z. T. (2013). Cooperative association/ re-association approaches to optimize energy consumption for real-time IEEE 802.15.4/ZigBee wireless sensor networks. Wireless Personal Communications, 71(4), 3157–3183.

    Article  Google Scholar 

  5. Lee, J. -S., & Huang, Y. C. (2006). ITRI ZBnode: A ZigBee /IEEE 802.15.4 platform for wireless sensor networks. In Proceedings of the IEEE SMC (pp. 1462–1467). Taipei, Taiwan.

  6. Lee, J. -S., Su, Y. -W., & Shen, C.-C. (2007). A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In Proceedings of the IEEE IECON (pp. 46–51). Las Vegas, USA.

  7. Chandra, A. (2012). Energy conservation in wireless communication systems with relays. In Proceedings of the IEEE MNCAPPS (pp. 1–4). Bangalore.

  8. Miao, G., Himayat, N., Li, Y. G., & Swami, A. (2009). Cross-layer optimization for energy-efficient wireless communications: A survey. Wireless Communications and Mobile Computing, 9(4), 529–542.

    Article  Google Scholar 

  9. Yang, W., Li, L.-H., Sun, W.-L., & Wang, Y. (2010). Energy-efficient relay selection and optimal relay location in cooperative cellular networks with asymmetric traffic. The Journal of China Universities of Posts and Telecommunications, 17(6), 80–88.

    Article  Google Scholar 

  10. Cui, S., Goldsmith, A., & Bahai, A. (2004). Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications, 22(6), 1089–1098.

    Article  Google Scholar 

  11. Rosas, F., & Oberli, C. (2012). Modulation and SNR optimization for achieving energy-efficient communications over short-range fading channels. IEEE Transactions on Wireless Communications, 11(12), 4286–4295.

    Article  Google Scholar 

  12. de Oliveira Brante, G. G., Kakitani, M. T., & Souza, R. D. (2011). Energy efficiency analysis of some cooperative and non-cooperative transmission schemes in wireless sensor networks. IEEE Transactions on Communications, 59(10), 2671–2677.

    Article  Google Scholar 

  13. Zhang, R., & Gorce, J.-M. (2008). Optimal transmission range for minimum energy consumption in wireless sensor networks. In Proceedings of the IEEE WCNC (pp. 757–762). Las Vegas, USA.

  14. Wang, S., & Nie, J. (2010). Energy efficiency optimization of cooperative communication in wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2010(162326), 1–8.

    Google Scholar 

  15. Schwieger, K., & Fettweis, G. (2004). Multi-hop transmission: Benefits and deficits. In Proceedings of the GI/ITG Fachgespraech Sensornetze (pp. 26–27). Karlsruhe, Germany.

  16. Abdulhadi, S., Jaseemuddin, M., & Anpalagan, A. (2012). A survey of distributed relay selection schemes in cooperative wireless ad hoc networks. Wireless Personal Communications, 63(4), 917–935.

    Article  Google Scholar 

  17. Li, G. Y., Xu, Z.-K., Xiong, C., Yang, C.-Y., Zhang, S.-Q., Chen, Y., et al. (2011). Energy-efficient wireless communications: Tutorial, survey, and open issues. IEEE Wireless Communications Magazine, 18(6), 28–35.

    Article  Google Scholar 

  18. de Oliveira Brante, G. G., Kakitani, M. T., & Souza, R. D. (2011). Energy efficiency analysis of some cooperative and non-cooperative transmission schemes in wireless sensor networks. IEEE Transactions on Communications, 59(10), 2671–2677.

    Article  Google Scholar 

  19. Zid, M. B., Raoof, K., & Bouallègue, A. (2012). MIMO spectral efficiency over energy consumption requirements: Application to WSNs. International Journal of Communications, Network and System Sciences, 5, 121–129.

    Article  Google Scholar 

  20. Ghosh, B., Ghosh, A., Biswas, N., & Chandra, A. (2012). Placing the ‘third’ node: An energy efficiency perspective. In Proceedings of the IEEE CODEC (pp. 1–4). Kolkata, India.

  21. Graves, W. (2003). Managing noise and spurious within complex microwave assemblies. RF Design, 26(7), 26–37.

    Google Scholar 

  22. Cui, S., Goldsmith, A. J., & Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Transactions on Wireless Communications, 4(5), 2349–2360.

    Article  Google Scholar 

  23. Shih, E., Cho, S., Lee, F. S., Calhoun, B. H., & Chandrakasan, A. (2004). Design considerations for energy-efficient radios in wireless microsensor networks. Journal of VLSI signal processing systems for signal, image and video technology, 37(1), 77–94.

    Article  Google Scholar 

  24. IEEE Computer Society, LAN/MAN Standards Committee. Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs). IEEE Std 802.15.4-2006, Sep. 2006.

  25. Adams, J. T. (2006). An introduction to IEEE STD 802.15.4. In Proceedings of the IEEE aerospace conference (pp. 1–8). Big Sky, Montana, USA.

  26. Otal, B., Verikoukis, C., & Alonso, L. (2007). Efficient power management based on a distributed queuing MAC for wireless sensor networks. In Proceedings of the IEEE VTC (pp. 105–109). Dublin, Ireland.

  27. Goldsmith, A. (2005). Wireless communications. Cambridge.

  28. Howitt, I., & Gutierrez, J. A. (2003). IEEE 802.15.4 low rate-wireless personal area network coexistence issues. In Proceedings of the IEEE WCNC volume (Vol. 37, pp. 1481–86). New Orleans, LA, USA.

  29. Hasna, M. O., & Alouini, M.-S. (2003). End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Transactions on Wireless Communications, 2(6), 1126–1131.

    Article  Google Scholar 

  30. Abramowitz, M., & Stegun, I. (1970). Handbook of mathematical functions. New York: Dover.

    Google Scholar 

  31. Hasna, M. O., & Alouini, M.-S. (2004). A performance study of dual-hop transmissions with fixed gain relays. IEEE Transactions on Wireless Communications, 3(6), 1963–1968.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Chandra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra, A., Biswas, S., Ghosh, B. et al. Energy Efficient Relay Placement in Dual Hop 802.15.4 Networks. Wireless Pers Commun 75, 1947–1967 (2014). https://doi.org/10.1007/s11277-013-1447-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1447-7

Keywords

Navigation