Skip to main content
Log in

Analysis of CDMA MIMO Beamforming Multicell Deployment Scenarios using Effective Radiation Patterns

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents approximate formulas for the signal to interference ratio (SIR) gain and the corresponding bit error rate (BER) performance, when the simple concept of an effective radiation pattern of the produced ‘real world’ Multiple-Input-Multiple-Output (MIMO) beamforming radiation pattern, is considered for CDMA multi-cell/tier deployments. These simple and practical formulas can be easily used to produce initial results for a range of effective values corresponding to different operational scenarios, and hence, provide a fast and straightforward approach to evaluate performance aspects of MIMO beamforming multicell deployments. Results show that for macrocellular operational scenarios with \(10^{\circ }\) effective beamwidth and \(-\)10 dB effective average sidelobe level, 11 dB SIR gain and 3.5 orders of magnitude BER improvement (compared to the omnidirectional scenario) can be achieved with an aggressive (MIMO beamforming in all cells) deployment strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Another similar simple interference model was presented in [9]. These models are known to be accurate for large numbers of uniformly distributed users and it was shown in [18] that they are equivalent for this kind of analysis.

  2. Note that the assumption made throughout this study that the radiation patterns in all cells have the same characteristics, is generally valid if realistic values are used for these characteristics.

  3. This is not the case for operational scenarios with multiple multipath clusters (e.g. bad urban)

  4. Note that for the examined ranges of BW and SLL the max directivity is \(\sim \)14 dB, hence, a linear array with up to 25 antenna elements would be required.

References

  1. Liberti, J., & Rappaport, T. (1999). Smart antennas for wireless communications. New Jersey, USA: Prentice Hall.

    Google Scholar 

  2. Godara, L. (2004). Smart antennas. Florida, USA: CRC Press.

    Book  Google Scholar 

  3. Zooghby, A. (2005). Smart antenna engineering. Norwood, USA: Artech House.

    Google Scholar 

  4. Paulraj, A., Nabar, R., & Gore, D. (2003). Introduction to space-time wireless communications. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  5. Tsoulos, G. (2006). MIMO system technology for wireless communications. Florida, USA: Taylor & Francis Group.

    Book  Google Scholar 

  6. Bolcskei, H., Gesbert, D., Papadias, C., & Van der Veen, A. (2006). Space-time wireless systems. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  7. Swales, S., Beach, M., Edwards, D., & McGeehan, J. (1990). The performance enhancement of multibeam adaptive base-station antennas for cellular land mobile radio systems. IEEE Transactions on Vehicular Technology, 39(1), 387–398.

    Article  Google Scholar 

  8. Naguib, A., Paulraj, A., & Kailath, T. (1994). Capacity improvement with base-station antenna arrays in cellular CDMA. IEEE Transactions on Vehicular Technology, 43(3), 691–698.

    Article  Google Scholar 

  9. Liberti, J., & Rappaport, T. (1994). Analytical results for capacity improvements in CDMA. IEEE Transactions on Vehicular Technology, 43(3), 680–690.

    Article  Google Scholar 

  10. Li, Y., Feuerstein, M., & Reudink, D. (1997). Performance evaluation of cellular base station multibeam antenna. IEEE Transactions on Vehicular Technology, 46(1), 1–9.

    Article  Google Scholar 

  11. Zetterberg, P., & Ottersten, B. (1995). The spectrum efficiency of base station antenna array system for spatially selective transmission. IEEE Transactions on Vehicular Technology, 44(3), 651–660.

    Article  Google Scholar 

  12. Elmusrati, M., & Koivo, H. (2002). Performance analysis of DS-CDMA mobile communication systems with MIMO antenna system and power control. IEEE ISSSTA.

  13. Dietrich, C., Stutzman, W., Kim, B., & Dietze, K. (2000). Smart antennas in wireless communications; base-station diversity and handset beamforming. IEEE Antennas and Propagation Magazine, 42(5), 142–151.

    Article  Google Scholar 

  14. Tsoulos, G. V., McGeehan, J. P., & Beach, M. A. (1998). Space division multiple access (SDMA) Field Trials—Part II: Calibration and linearity issues. IEE Proceedings Radar, Sonar and Navigation, special issue on Antenna Array Processing Techniques, 145(1), 79–84.

    Google Scholar 

  15. Norklit, O., Eggers, P. C. F., & Andersen, J. B. (1995). Jitter diversity in multipath environments. IEEE Vehicular Technology Conference.

  16. Eggers, P. C. F. (1995). Angular dispersive mobile radio environments sensed by highly directive base station antennas. In IEEE international symposium on personal indoor and mobile radio communications.

  17. Steyskal, H., & Herd, J. (1995). Mutual coupling compensation in small array antennas. IEEE Transactions on Antennas and Propagation, 38(12), 1971–1975.

    Article  Google Scholar 

  18. Tsoulos, G. V. (1998). Approximate SIR and BER formulas for DS-CDMA based on the produced radiation pattern characteristics with adaptive antennas. IEE Electronics Letters, 19, 1802–1803.

    Article  Google Scholar 

  19. Qualcomm Inc. (1992, May). An overview of the application of Code Division Multiple Access (CDMA) to digital cellular systems and personal cellular networks, EX60-10010.

  20. Tsoulos, G. V., & Athanasiadou, G. E. (2002). On the application of adaptive antennas to microcellular environments: Radio channel characteristics and system performance. IEEE Transactions on Vehicular Technology, 51(1), 1–16.

    Article  Google Scholar 

  21. Holma, H., & Toskala, A. (2002). WCDMA for UMTS. West Sussex, England: Wiley. Second Edition.

    Book  Google Scholar 

  22. Fehske, A., Fettweis, G., Malmodin, J., & Biczok, G. (2011). The global footprint of mobile communications: The ecological and economic perspective. IEEE Communications Magazine, 49(8), 55–62.

    Article  Google Scholar 

  23. Congzheng, H., Harrold, T., Armour, S., Krikidis, I., et al. (2011). Green radio: Radio techniques to enable energy-efficient wireless networks. IEEE Communications Magazine, 49(6), 46–54.

    Article  Google Scholar 

  24. Ahlbom, A., Bergqvist, U., Bernhardt, J., Cesarini, J., et al. (1998). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Physics, 74, 494–521.

    Google Scholar 

  25. The BioInitiative Report: A Rationale for a Biologically-based Public Exposure Standard for Electromagnetic Fields (ELF and RF), Accessed September 2007, http://www.bioinitiative.org/.

  26. Tsoulos, G. V. (1999). Smart antennas for mobile communication systems: Benefits and challenges. IEE Electronics and Communication Engineering Journal, 11(2), 84–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Tsoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsoulos, G.V., Athanasiadou, G.E. Analysis of CDMA MIMO Beamforming Multicell Deployment Scenarios using Effective Radiation Patterns. Wireless Pers Commun 75, 2269–2280 (2014). https://doi.org/10.1007/s11277-013-1466-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1466-4

Keywords

Navigation