Skip to main content

Advertisement

Log in

Performance of Dualbeam MIMO for Millimeter Wave Indoor Communication Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Millimeter wave (MMW) communication provides high data rates for the personal area networks with the availability of 57–64 GHz unlicensed spectrum, in indoor environment. Multipath fading being pre-dominant in indoor, multi input multi output (MIMO) technology is considered to be the ideal choice compared with the existing systems. As spatial diversity in both transmit and receive enhances the diversity gain, the performance of the system is further enhanced by introducing transmit beamforming based antenna beam diversity. In classical \(2\times 2\) MIMO, a diversity gain of 4 is achieved, whereas in this work, space time block code matrix of code rate 1/2 and dualbeam \(2\times 2\) MIMO with diversity gain 8 is considered. Dualbeam is generated by antenna array with four elements per array with out of phase feed configuration. The weight vector of the beamforming network is out of phase as to reduce the interference between the beams. The dualbeam transmitter is designed with unknown channel state information. Training symbols are transmitted to train and track the channel statistics at the receiver. The proposed work is carried out for MMW indoor system. The indoor channel is modeled using Triple Saleh–Valenzuela (TSV) model that takes into account both time of arrival and the angle of arrival information of the rays. Channel estimation is done for classical MIMO and the above proposed model in both Rayleigh and TSV channel. The orthogonal beams facilitate linear processing in the receiver. Hence maximum ratio combiner with maximum likelihood decoder is used in the receiver to decode the transmitted data. Classical MIMO and dualbeam MIMO are evaluated with respect to bit error rate and channel models. An improved diversity order is achieved with dualbeam MIMO compared to classical MIMO, with a power gain of 1.6 dB. The dualbeam MIMO using TSV is found to perform better compared to dualbeam MIMO using Rayleigh in the low Energy per bit to Noise level \((\hbox {E}_{\mathrm{b}}/\hbox {N}_{0})\) with a power gain of 2 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Torkildson, E., Madhow, U., & Rodwell, M. (2011). Indoor millimeter wave MIMO: Feasibility and performance. IEEE Transactions on Wireless Communications, 10(12), 4150–4160.

    Article  Google Scholar 

  2. Sheldon, C., Torkildson, E., Seo, M., Patrick Yue, C., Rodwell, M., & Madhow, U. (2008). Spatial multiplexing over a line-of-sight millimeter-wave MIMO link: A two-channel hardware demonstration at 1.2 Gbps over 41 m range. In Proceedings of the 1st european wireless technology conference (pp. 198–201).

  3. Sheldon, C., Seo, M., Torkildson, E., Rodwell, M., & Madhow, U. (2009). Four-channel spatial multiplexing over a millimeter-wave line-of-sight link. In IEEE MTT-S international microwave symposium digest (pp. 389–392).

  4. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.

    Article  Google Scholar 

  5. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.

    Article  MATH  MathSciNet  Google Scholar 

  6. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transaction on Information Theory, 44(2), 744–765.

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, Z., Vucetic, B. S., Yuan, J., & Lo, K. L. (2002). Space-time trellis codes for 4-PSK with three and four transmit antennas in quasi-static flat fading channels. IEEE Communication Letters, 6(2), 67–69.

    Article  MATH  Google Scholar 

  8. Dong, K., Prasad, N., Wang, X., & Zhu, S. (2011). Adaptive antenna selection and Tx/Rx beamforming for large-scale MIMO systems in 60 GHz channels. EURASIP Journal on Wireless Communications and Networking. doi:10.1186/1687-1499-2011-59.

  9. Naya, M. E., Paris, J. F., Fernandez-Plazaola, U., & Goldsmith, A. J. (2007). Analysis of MIMO beamforming with channel response variations over the frame interval. In IEEE global telecommunications conference (pp. 1597–1601).

  10. Zhou, S., & Giannakis, G. B. (2002). Optimal transmitter eigen-beamforming and space-time block coding based on channel mean feedback. IEEE Transactions on Signal Processing, 50(10), 1673–1690.

    Article  Google Scholar 

  11. Zhou, W., Chen, H., & Lam, W. H. (2011). Optimality of beamforming condition for multiple antenna systems with mean feedback. EURASIP Journal on Wireless Communications and Networking. doi:10.1186/1687-1499-2011-160.

  12. Sharma, V., & Lambotharan, S. (2006). Multiuser downlink MIMO beamforming using an iterative optimization approach. In IEEE 64th vehicular technology conference VTC-2006 (pp. 1–5).

  13. Lee, H., Park, S., & Lee, I. (2009). Transmit beamforming method based on maximum-norm combining for MIMO systems. IEEE Transactions on Wireless Communications, 8(4), 2067–2075.

    Article  Google Scholar 

  14. Coşkun, A. F., Kucur, O., & Altunbaş, I. (2012). Performance analysis of space-time block codes with transmit antenna selection in Nakagami-m fading channels. Springer Wireless Personal Communications, 67(3), 557–571.

    Article  Google Scholar 

  15. Wang, J., Fang, Y., & Wu, D. (2005). Uplink medium access control for WLAN with multi-beam access point. In IEEE global telecommunications conference (pp. 3012–3016).

  16. Yazd, M. H., & Dana, F. R. (2005). Novel smart antenna array for IEEE 802.11a wireless LAN applications. In IEEE antenna and propagation society international symposium (pp. 295–298).

  17. Hwang, S. S., & Lee, Y. H. (2005). Multi-beam multiplexing using multiuser diversity and random beams in wireless systems. In IEEE international conference on communications (pp. 2717–2721).

  18. Sato, K., Sawada, H., & Kato, Y. S. S. (2007). Channel model for millimeter wave WPAN. In The 18th annual IEEE international symposium on personal, indoor and mobile radio communications (PIMRC’07) (pp. 1–5).

  19. Karedal, J., Almers, P., Johansson, A., Tufvesson, A., & Molisch, A. (2010). A MIMO channel model for wireless personal area networks. IEEE Transactions on Wireless Communications, 9(1), 245–255.

    Article  Google Scholar 

  20. Rao, T., Murugesan, D., Ramesh, S., & Labay, V. A. (2011). Radio channel characteristics in an indoor corridor environment at 60 GHz for wireless networks. In IEEE 5th international conference in advanced networks and telecommunication systems (ANTS’11) (pp. 1–5).

  21. Skafidas, E., Pollock, T., Liu, C., & Saleem, K. (2005). Channel measurements and setup for SV channel model parameter determination at 60 GHz. IEEE P802.15-05-0368-00-003c/r0.

  22. Sawada, H., Shoji, Y., & Choi, C. S. (2008). Proposal of novel statistic channel model for millimeter wave WPAN-TSV: Shoji–Sawada–Saleh (Triple S)–Valenzuela model. In Proceedings of Asia-Pacific microwave conference (pp. 1855–1858).

  23. Manojna, D. S., Kirthiga, S., & Jayakumar, M. (2011). Spatial multiplexing using TSV model. International Journal of Computer Science Engineering and Technology, 1(5), 244–248.

    Google Scholar 

  24. Kirthiga, S., & Jayakumar, M. (2012). Performance and capacity analysis of MIMO system at 5 GHz and 60 GHz in indoor environment. WSEAS Transactions on Communication, 11(11), 415–426.

    Google Scholar 

  25. Holloway, C. L., Boulder, C. O., Cotton, M. G., & McKenna, P. (1999). A model for predicting the power delay profile characteristics inside a room. IEEE Transactions on Vehicular Technology, 48(4), 1110–1120.

    Article  Google Scholar 

  26. Jankiraman, M. (2004). Space time codes and MIMO systems. Norwood, MA: Universal Personal Communications.

    Google Scholar 

  27. Biguesh, M., & Gershman, A. B. (2006). Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals. IEEE Transactions on Signal Processing, 54(3), 884–893.

    Article  Google Scholar 

  28. Chen, Y. C., & Su, Y. T. (2010). MIMO channel estimation in correlated fading environments. IEEE Transactions on Wireless Communications, 9(3), 1108–1119.

    Article  Google Scholar 

  29. Hassibi, B., & Hochwald, B. M. (2003). How much training is needed in multiple-antenna wireless links? IEEE Transactions on Information Theory, 49(4), 951–963.

    Article  MATH  Google Scholar 

  30. Paulraj, A., Nabar, R., & Gore, D. (2006). Introduction to space-time wireless communications. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  31. Yong, S. K., & Chong, C. C. (2007). An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges. EURASIP Journal on Wireless Communications and Networking. doi:10.1155/2007/78907.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kirthiga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirthiga, S., Jayakumar, M. Performance of Dualbeam MIMO for Millimeter Wave Indoor Communication Systems. Wireless Pers Commun 77, 289–307 (2014). https://doi.org/10.1007/s11277-013-1506-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1506-0

Keywords

Navigation