Skip to main content
Log in

Cooperative Impulse Radio Ultra-Wideband Communication Using Coherent and Non-Coherent Detectors: A Review

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Ultra-wideband (UWB) is a booming technology in the field of wireless communication. This paper presents a brief idea related to the various coherent and non-coherent IR-UWB detectors. Due to the limitation in transmit power spectral density of UWB system, the major challenges faced by UWB system includes, achieving Quality of Service, system performance and coverage area. So, the combination of UWB system with cooperative communication will not only improve the system performance, but also help in expanding coverage area of signals. A brief review of the work done by various researchers in the field of cooperative impulse radio (IR) UWB communication is also presented in this paper. The working principle and performance analysis of the various coherent and non-coherent IR-UWB detectors using cooperative relay strategies are also discussed at large in this paper. The various fixed cooperative relay strategies used for cooperative UWB communication is Amplify and Forward, Decode and Forward and Detect and Forward. From the simulation results it can be inferred that, even though IR-UWB DTR receiver gives a much better BER performance than IR-UWB ED receiver using both cooperative and non-cooperative strategies, yet ED receiver is preferred because of its less complexity and low power consumption. Future prospects in the field of cooperative IR-UWB communication have also been discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AC:

Autocorrelation

AF:

Amplify and forward

ARAKE:

All RAKE

ATR:

Average transmitted reference

BC:

Broadcast

BEP:

Bit error probability

BER:

Bit error rate

BPF:

Bandpass filter

CF:

Characteristic function

CIR:

Channel impulse response

CSI:

Channel state information

DF:

Decode and forward

DS:

Direct sequence

DTF:

Detect and forward

DTR:

Differential transmitted reference

ED:

Energy detector

EGC:

Equal gain combining

FCC:

Federal communications commission

FDD:

Frequency division duplex

FR:

Fixed relaying

GLRT:

Generalized likelihood ratio test

IR:

Impulse radio

LOS:

Line of sight

MA:

Multiple access

MD:

Multiple-differential

MF:

Matched filter

MGF:

Moment generating function

MinMax-RS:

Minimax relay selection

MMSE:

Minimum mean square estimation

MP-RS:

Maximum product relay section

MRC:

Maximal ratio combining

MUD:

Multi-user detector

MUI:

Multi-user interference

NB:

Narrowband

NC:

Network coding

NCBC:

Network coded broadcasting

NLOS:

Non line of sight

OOK:

On-off keying

PAM:

Pulse amplitude modulation

PDP:

Power delay profile

PDR:

Packet delivery ratio

PNC:

Physical network coding

PPM:

Pulse position modulation

PRAKE:

Partial combining RAKE

PSD:

Power spectral density

QoS:

Quality of service

RC:

Relay combining

SC:

Selection combining

SOVA:

Soft output viterbi decoding algorithm

SR:

Selective relaying

SRAKE:

Selective combining RAKE

SUD:

Single user detector

S–V:

Saleh–Venezuela

TDD:

Time division duplex

TDMA:

Time division multiple access

TH:

Time hop

TR:

Transmitted reference

TRPC:

Transmitted reference pulse cluster

UCoRS:

UWB based cooperative retransmission scheme

UWB:

Ultra-wideband

WED:

Weighted energy detector

References

  1. Win, M. Z., & Scholtz, R. A. (1998). Impulse radio: How it works. IEEE Communication Letters, 2(2), 36–38. doi:10.1109/4234.660796.

    Article  Google Scholar 

  2. Federal Communications Commission (FCC), Revision of part 15 of the commission’s rules against regarding Ultra-Wideband Transmission Systems. First Report and Order, ET Docket 98-153, FCC 02-48, Adopted: Feb 2002, Release Apr 2002. http://www.ntia.doc.gov/fcc-filing/2000/ntia-comments-revision-part-15-commissions-regarding-ultrawideband-transmission-syst.

  3. Porcino, D., & Hirt, W. (2003). Ultra-wideband radio technology: Potential and challenges ahead. IEEE Communications Magazine, 41(7), 66–74. doi:10.1109/MCOM.2003.1215641.

    Article  Google Scholar 

  4. Aiello, G. R., & Rogerson, G. D. (2003). Ultra-wideband wireless systems. IEEE Microwave Magazine, 4(2), 36–47. doi:10.1109/MMW.2003.1201597.

    Article  Google Scholar 

  5. Wentzloff, D. D., Blazquez, R., Lee, F. S., Ginsburg, P., Powell, J., & Chandrakeshan, A. P. (2005). System design considerations for ultra-wideband communication. IEEE Communications Magazine, 43(8), 114–121. doi:10.1109/APS.2003.1217587.

    Article  Google Scholar 

  6. Mohammad, S., & Sadough, S. (2009). A tutorial on ultra wideband modulation and detection schemes. http://www.faculties.sbu.ac.in/sadough/pdf/uwb_tutorial.pdf. Accessed Apr 2009.

  7. Fernandes, J. R., & Wentzloff, D. (2010). Recent advances in IR-UWB transceivers: An overview. In Proceedings of IEEE international symposium on circuits and systems (ISCAS) (pp. 3284–3287). doi:10.1109/ISCAS.2010.5537916.

  8. Siriwongpairat, W. P., Su, W., Han, Z., & Liu, K.-J.-R. (2006). Employing cooperative diversity for performance enhancement in UWB communication systems. In Proceedings IEEE wireless communication and networking conference (WCNC), vol. 4 (pp. 1854–1859). doi:10.1109/WCNC.2006.1696578.

  9. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080. doi:10.1109/TIT.2004.838089.

    Article  MathSciNet  Google Scholar 

  10. Laneman, J. N. (2002). Cooperative diversity in wireless networks: Algorithm and architectures. Ph.D dissertation, MIT, Cambridge, MA, 2002. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.305&rep=rep1&type=pdf.

  11. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity-part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938. doi:10.1109/TCOMM.2003.818096.

    Article  Google Scholar 

  12. Jamshidi, A., & Nasiri-Kenari, M. (2008). Performance analysis of transmitter-side cooperation-receiver-side-relaying schemes for heterogeneous sensor networks. IEEE Transactions on Vehicular Technology, 57(3), 1548–1563. doi:10.1109/TVT.2007.909299.

    Article  Google Scholar 

  13. Van Der Meulen, E. C. (1971). Three-terminal communication channels. Advances in Applied Probability, 3(1), 120–154.

  14. Cover, T. M., & El Gamal, A. A. (1979). Capacity theorems for the relay channel. IEEE Transactions on Information Theory, 25(5), 572–584. doi:10.1109/TIT.1979.1056084.

    Article  MATH  Google Scholar 

  15. Katiyar, H., Rastogi, A., & Agarwal, R. (2011). Cooperative communication: A review. IETE Technical Review, 28(5), 409–417. doi:10.4103/0256-4602.85974.

    Article  Google Scholar 

  16. Khan, M. G., Nordberg, J., & Claesson, I. (2008). Performance evaluation of RAKE receiver for low data rate UWB systems using multipath channels for industrial environments. Research Report, Blekinge Institute of Technology. http://www.bth.se/fou/forskinfo.nsf/0/ee5efbf0dad21be4c125746d004ee979/file/UWBResearchReport1_MGK.pdf.

  17. Win, M. Z., & Scholtz, R. A. (2002). Characterizati on of ultra-wide bandwidth wireless indoor channels: A communication-theoretic view. IEEE Journal on Selected Areas in Communication, 20(9), 1613–1627. doi:10.1109/JSAC.2002.805031.

    Article  Google Scholar 

  18. Cassioli, D., Win, M. Z., Vatalaro, F., & Molisch, A. F. (2002). Performance of low- complexity RAKE reception in a realistic UWB channel. Proceedings of IEEE International Conference on Communications, ICC, 2(2), 763–767. doi:10.1109/ICC.2002.996958.

  19. Amico, A. A. D., Mengali, U., & Taponecco, L. (2004). Performance comparisons between two signaling formats for UWB communications. In Proceedings of IEEE international conference on communications, ICC, vol. 6 (pp. 3404–3408). doi:10.1109/ICC.2004.1313176.

  20. Romme, J., & Witrisal, K. (2006). Transmitted-reference UWB systems using weighted autocorrelation receivers. IEEE Transactions on Microwave Theory and Technology, 54(4), 1754–1761. doi:10.1109/TMTT.2006.872061.

    Article  Google Scholar 

  21. Luo, X., & Gian nakis, G. B. (2006). Achievable rates of transmitted-reference ultra-wideband radio With PPM. IEEE Transactions on Communications, 54(9), 1536–1541. doi:10.1109/TCOMM.2006.881203.

    Article  Google Scholar 

  22. Amico, A. A. D., & Mengali, U. (2005). GLRT receivers for UWB systems. IEEE Communications Letters. doi:10.1109/LCOMM.2005.06032.

  23. Chan, Y.-L., & Scholtz, R. A. (2003). Optimal and suboptimal receivers for ultra-wideband transmitted reference systems. In Proceedings Of global telecommunications conference, Globecom, vol. 2 (pp. 759–763). doi:10.1109/GLOCOM.2003.1258340.

  24. Franz, S., & Mitra, U. (2003). On optimal data detection for UWB transmitted reference systems. In Proceedings of IEEE global telecommunications conference, Globecom, vol. 2 (pp. 744–748). doi:10.1109/GLOCOM.2003.1258337.

  25. He, S., & Dong, X. (2010). Implementation of a low complexity UWB transmitted reference pulse cluster system. In Proceedings of 2010 IEEE 72nd vehicular technology conference, (VTC Fall) (pp. 1–5). doi:10.1109/VETECF.2010.5594332.

  26. El Abri, K. B. H., & Bouallegue, A. (2012). A new UWB system based on a frequency domain transformation of the received signal. International Journal of Wireless and Mobile Networks (IJWMN), 4(2), 175–179.

    Article  Google Scholar 

  27. Amico, A. A. D., & Taponecco, L. (2006). A differential receiver for UWB systems. IEEE Transactions on Wireless Communications, 5(7), 1601–1605. doi:10.1109/TWC.2006.1673067.

    Article  Google Scholar 

  28. Khani, H., & Azmi, K. (2008). Performance analysis of a high data rate UWB DTR system in dense multipath channels. Progress in Electromagnetics Research B, 5, 119–131.

    Article  Google Scholar 

  29. Sahin, M. E., Guvenc, I., & Arslan, H. (2005). Optimization of energy detector receivers for UWB systems. In Proceedings of 2005 IEEE 61st vehicular technology conference (VTC Spring), vol. 2 (pp. 1386–1390). doi:10.1109/VETECS.2005.1543536.

  30. Jianjun, Wu, Qinglin, L., & Hiage, X. (2008). Analysis of weighted non-coherent receiver for UWB-OOK signal in multipath channels. Journal of Electronics (China), 25(1), 32–38.

    Article  Google Scholar 

  31. Wang, F., Tian, Z., & Sandler, B. M. (2011). Weighted energy detection for noncoherent ultra-wideband receiver design. IEEE Transactions on Wireless Communications, 10(2), 710–720. doi:10.1109/TWC.2010.120310.101390.

    Article  Google Scholar 

  32. Ji, S. A., Lee, S. J., & Kim, J. S. (2012). Simplified structure of weighted energy detector for UWB-IR systems. IEEE Electronic Letters, 48(1), 48–50. doi:10.1049/el2011.2755.

    Article  Google Scholar 

  33. Jianjun, Wu, Qinglin, L., & Hiage, X. (2006). Weighted noncoherent receivers for UWB PPM signals. IEEE Communications Letters, 10(9), 655–657. doi:10.1109/LCOMM.2006.1714535.

    Article  Google Scholar 

  34. Qing-Hua, S., Xuan-li, X., Di, L., & Xin, Q. (2010). Performance analysis of cooperative ultra-wideband communication system. In Proceedings of 2010 IEEE international conference on communications and mobile computing (CMC), vol. 2 (pp. 217–220). doi:10.1109/CMC.2010.249.

  35. Lee, Y., & Tsai, M.-H. (2009). Performance of decode-and-forward cooperative communications over Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 58(3), 1218–1228. doi:10.1109/TVT.2008.928907.

    Article  Google Scholar 

  36. Bai, Z., & Xu, Y. (2012). MGF based performance analysis of dual-hop regenerative relaying IR-UWB systems. International Journal of Electronics and Communication (AEU), Elsevier, 66(8), 641–646. doi:10.1016/j.aeue.2011.12.003.

  37. Yuan, J., Li, Y., & Chu, L. (2010). Differential modulation and relay selection with detect-and-forward cooperative relaying. IEEE Transactions on Vehicular Technology, 59(1), 261–268. doi:10.1109/TVT.2009.2031802.

    Article  Google Scholar 

  38. Aziz, A. A., Iwanami, Y., & Okamato, E. (2009). Efficient combining technique with a low complexity detect-and-forward relay for cooperative diversity scheme. In Proceedings of IEEE region 10 conference. TENCON, vol. 9 (pp. 1–6). doi:10.1109/TENCON.2009.5396130.

  39. Maichalernnukul, K., Kaiser, T., & Zheng, F. (2009). On the performance of coherent and noncoherent UWB detection systems using a relay with multiple antennas. IEEE Transactions on Wireless Communications, 8(7), 3407–3414. doi:10.1109/TWC.2009.080830.

    Article  Google Scholar 

  40. Saleh, A. A. M., & Venezuela, R. (1987). A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications, 5(2), 128–137. doi:10.1109/JSAC.1987.1146527.

    Article  Google Scholar 

  41. Maichalernnukul, K., Kaiser, T., & Feng, Z. (2009). Performance investigation of a UWB relay system using multiple relays with multiple antennas in IEEE 802.15.3a channel. In Proceedings of IEEE 69th vehicular technology conference, VTC, Spring (pp. 1–6). doi:10.1109/VETECS.2009.5073792.

  42. Shirazi, G. N., Kong, P. Y., & Tham, C. K. (2008). A low-overhead cooperative retransmission scheme for IR-UWB networks. Research Letters in Communication. doi:10.1109/ICUWB.2008.4653387.

  43. Shirazi, G. N., Kong, P. Y., & Tham, C. K. (2010). Optimal cooperative relaying schemes in IR-UWB networks. IEEE Transactions on Mobile Computing, 9(7), 969–981. doi:10.1109/TMC.2010.43.

    Article  Google Scholar 

  44. Abou-Rjeily, C. (2013). A symbol-by-symbol cooperative diversity scheme for relay-assisted UWB communications with PPM. IEEE Journal on Selected Areas in Communication, 31(8), 1436–1445. doi:10.1109/JSAC.2013.130808.

    Article  Google Scholar 

  45. Abou-Rjeily, C., Daniele, N., & Belfiore, J. C. (2006). On the decode-and-forward cooperative diversity with coherent and non-coherent UWB systems. In Proceedings of IEEE 2006 international conference on ultra-wideband (pp. 435–440). doi:10.1109/ICU.2006.281589

  46. Zeinalpour-Yazdi, Z., Nasiri-Kenari, M., & Aazhang, B. (2012). Performance of UWB linked relay network with time-reversed transmission in the presence of channel estimation error. IEEE Transactions on Wireless Communications, 11(8), 2958–2969. doi:10.1109/TWC.2012.061912.111866.

    Google Scholar 

  47. Bai, Z., Xu, Y., Shen, B., Kwak, K. S. & Yuan, D. (2011). Performance analysis of dual-hop UWB system with non-regenerative relaying scheme. In Proceedings of 13th IEEE international conference on advanced communication technology (ICACT) (pp. 1221–1225).

  48. Xu, Y., Bai, Z., & Kwak, K. S. (2011). On the performance of dual-hop regenerative cooperative relaying of IR-UWB System. In Proceedings of 11th IEEE international symposium on communications and information technologies (ISCIT) (pp. 323–327). doi:10.1109/ISCIT.2011.6089758.

  49. Xu, Y., Bai, Z., Yang, X., Wang, A. L., & Kwak, K. (2011). Closed-form BER analysis of dual-hop non-regenerative IR-UWB system over multipath channels. In Proceedings of 2011 IEEE 13th international conference on communication technology (ICCT) (pp. 126–130). doi:10.1109/ICCT.2011.6157847.

  50. Zeinalpour Yazdi, Z., & Nasiri Kenari, M. (2010). Bit error probability analysis of UWB communications with a relay node. IEEE Transactions on Wireless Communications, 9(2), 802–813. doi:10.1109/TWC.2010.02.090383.

    Article  Google Scholar 

  51. Maichalernnukul, K., Feng, Z., & Kaiser, T. (2010). Dual-hop UWB transmissions using a multiple antenna relay with antenna selection versus single-antenna relay selection. In Proceedings of 2010 IEEE international ITG conference on source and channel coding (SCC) (pp. 1–6).

  52. Yang, Y., Wang, D., Li, M., & Song, Y. (2010). A relay selection scheme for IR-UWB networks based on distance information. In Proceedings of 2010 IEEE international conference on information theory and information security (ICITIS) (pp. 1046–1049). doi:10.1109/ICITIS.2010.5689728.

  53. Pan, G., Ekici, E., & Feng, Q. (2012). Performance analysis of cooperative time hopping UWB systems with multi-user interference. IEEE Transactions on Wireless Communications, 11(6), 1969–1975. doi:10.1109/TWC.2012.040412.102318.

    Article  Google Scholar 

  54. Maichalernnukul, K., Kaiser, T., & Feng, Z. (2011). Performance of ultrawideband cooperative relay systems in the presence of narrowband interference. In Proceedings of 2011 IEEE international conference on ultra-wideband (ICUWB) (pp. 405–409). doi:10.1109/ICUWB.2011.6058874

  55. Feng, W., Chengqi, X., & Yan, Z. (2009). The TR-UWB receiver based on spatial diversity. Journal of Electronics (China), 26(5), 623–630.

    Article  Google Scholar 

  56. Dong, X., & Dong, X. (2010). Bi-directional cooperative relays for transmitted reference pulse cluster UWB systems. In Proceedings of 2010 IEEE global telecommunications conference. Globecom (pp. 1–5). doi:10.1109/GLOCOM.2010.5683989.

  57. Gao, H., Su, X., Lv, T., Wang, T., & Wang, Z. (2011). Physical-layer network coding aided two way relay for transmitted-reference UWB networks. In Proceedings of 2011 IEEE global telecommunications conference, Globecom (pp. 1-6). doi:10.1109/GLOCOM.2011.6133672.

  58. Mondelli, M., Zhou, Q., Ma, X., & Lottici, V. (2012). A cooperative approach for amplify- and-forward differential transmitted reference IR-UWB relay systems. In Proceedings of 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 2905–2908). doi:10.1109/ICASSP.2012.6288524.

  59. Wu, T. M., & Hou, Y. F. (2011). Performance analysis of cooperative communication in the UWB differential transmitted reference system. In Proceedings of 2011 IEEE 73rd vehicular technology conference (VTC Spring) (pp. 1–5). doi:10.1109/VETECS.2011.5956239.

  60. Hamdi, M., Mietzner, J., & Schober, R. (2010). Double-differential encoding for dual-hop amplify-and-forward relaying in IR UWB systems. In Proceedings of 2010 IEEE 71st vehicular technology conference (VTC Spring) (pp. 1–5). doi:10.1109/VETECS.2010.5493862

  61. Hamdi, M., Mietzner, J., & Schober, R. (2011). Multiple-differential encoding for multi-hop amplify-and-forward relaying in IR-UWB systems. IEEE Transactions on Wireless Communications, 10(8), 2577–2591. doi:10.1109/TWC.2011.060811.100582.

    Article  Google Scholar 

  62. Wang, Z., Lv, T., Gao, H., & Li, Y. (2011). A novel two-way relay UWB network with joint non-coherent detection in multipath. In Proceedings of 2011 IEEE 73rd vehicular technology conference (VTC Spring) (pp. 1–5). doi:10.1109/VETECS.2011.5956243.

  63. Wu, T. S., & Hou, Y. F. (2012). Noncoherent UWB with block coded modulation in cooperative communications systems. In Proceedings of 2012 IEEE 16th international symposium on consumer electronics (ISCE) (pp. 1–4). doi:10.1109/ISCE.2012.6241751.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjay Hazra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazra, R., Tyagi, A. Cooperative Impulse Radio Ultra-Wideband Communication Using Coherent and Non-Coherent Detectors: A Review. Wireless Pers Commun 77, 719–748 (2014). https://doi.org/10.1007/s11277-013-1533-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1533-x

Keywords

Navigation