Skip to main content
Log in

Angle-of-Arrival Estimation of Multipath Signals in A Passive Coherent Location System Using OFDM-Based Illuminators

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Terrestrial multipath interference is inevitably problematic in passive coherent location (PCL) systems because it can overwhelm target signals and cause detection errors. However, angle-of-arrival (AOA) information about multipath signals can be used to reduce detection errors in PCL systems. This work proposes a new method of identifying AOA multipath components for PCL systems with OFDM-based illuminators. Use of a 3-element array deployed as an equilateral triangle enables accurate estimation of AOA information for multipath signals. Notably, the number of AOA estimations can far exceed the number of array elements. Simulation results confirm the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Berger, C. R., Demissie, B., Heckenbach, J., Willett, P., & Shengli, Z. (2010). Signal processing for passive radar using OFDM waveforms. IEEE Journal of Selected Topics in Signal Processing, 4, 226–238.

    Article  Google Scholar 

  2. Sen, S., & Nehorai, A. (2011). Adaptive OFDM radar for target detection in multipath scenarios. IEEE Transactions on Signal Processing, 59, 78–90.

    Article  MathSciNet  Google Scholar 

  3. Wu, M., Shan, T., & Zhuo, Z. (2011). An adaptive filter with discrete distribution structure in DTV based passive radar. In International conference on instrumentation, measurement, computer, communication and control (pp. 755–758).

  4. Kui, W., Ran, T., Yongfeng, M., & Tao, S. (2006). Adaptive multipath cancellation algorithm in passive radar. In Proceedings of of the CIE international conference on radar (pp. 1–4).

  5. Colone, F., Cardinali, R., & Lombardo, P. (2006). Cancellation of clutter and multipath in passive radar using a sequential approach. IEEE conference on radar (pp. 393–399).

  6. Colone, F., O’Hagan, D. W., Lombardo, P., & Baker, C. J. (2009). A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar. IEEE Transation on Aerospace and Electronic Systems, 45, 698–722.

    Article  Google Scholar 

  7. Zhu, J., Hong, Y., & Tao, L. (2007). Adaptive beamforming passive radar based on FM radio transmitter. In IET International conference on radar systems (pp. 1–4).

  8. Jiabing, Z. & Yi, H. (2011). Optimization of spatial filter for DPI and multipath interferences in passive radar. In IEEE CIE International conference on radar (pp. 1020–1024).

  9. Fabrizio, G., Colone, F., Lombardo, P., & Farina, A. (2009). Adaptive beamforming for high-frequency over-the-horizon passive radar. IET Radar, Sonar & Navigation, 3, 384–405.

    Article  Google Scholar 

  10. Colone, F., Cardinali, R., Lombardo, P., Crognale, O., Cosmi, A., Lauri, A., et al. (2009). Space-time constant modulus algorithm for multipath removal on the reference signal exploited by passive bistatic radar. IET Radar, Sonar & Navigation, 3, 253–264.

    Article  Google Scholar 

  11. Schell, S. V., Calabretta, R. A., & Gardner, W. A. (1989). Cyclic MUSIC algorithms for signal-selective direction finding. In Proceedings of IEEE ICASSP89 (pp. 2278–2281).

  12. Kim, K., Sarkar, T. K., Wang, H., & Salazar-Palma, M. (2004). Direction of arrival estimation based on temporal and spatial processing using a direct data domain (D\(^{3}\)) approach. IEEE Transactions on Antennas and Propagation, 52, 533–541.

    Article  Google Scholar 

  13. Xu, G., & Kailath, T. (1992). Direction-of-arrival estimation via exploitation of cyclostationarity—A combination of temporal and spatial processing. IEEE Transactions on Signal Processing, 40, 1775–1786.

    Article  MATH  Google Scholar 

  14. Gardner, W. A. (1986). Measurement of spectral correlation. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP–34, 1111–1123.

    Article  Google Scholar 

  15. Gardner, W. A. (1988). Simplification of MUSIC and ESPRIT by exploitation of cyclostationarity. Proceedings of the IEEE, 76, 845–847.

    Article  Google Scholar 

  16. Janaswamy, R. (2002). Angle and time of arrival statistics for the Gaussian scatter density model. IEEE Transactions on Wireless Communications, 1, 488–497.

    Article  Google Scholar 

  17. Ertel, R. B., & Reed, J. H. (1999). Angle and time of arrival statistics for circular and elliptical scattering models. IEEE Journal on Selected Areas in Communications, 17, 1829–1840.

    Article  Google Scholar 

  18. Bevan, D. D. N., Ermolayev, V. T., Flaksman, A. G., & Averin, I. M. (2004). Gaussian channel model for mobile multipath environment. EURASIP Journal on Applied Signal Processing, 2004, 1321–1329.

    Article  Google Scholar 

  19. Petrus, P., Reed, J. H., & Rappaport, T. S. (2002). Geometrical-based statistical macrocell channel model for mobile environments. IEEE Transactions on Communications, 50, 495–502.

    Article  Google Scholar 

  20. Suzuki, H. (1977). A statistical model for urban radio propogation. IEEE Transactions on Communications, 25, 673–680.

    Article  Google Scholar 

  21. Le, K. N. (2008). Bounds on inter-carrier interference power of OFDM in a Gaussian scattering channel. Wireless Personal Communications, 47, 355–362.

    Article  Google Scholar 

  22. Le, K. N., Dabke, K. P., & Egan, G. K. (2001). Signal detection using non-unity kernel time-frequency distributions. Optical Engineering, 40, 2866–2877.

    Article  Google Scholar 

  23. Le, K. N. (2007). A new formula for the angle-of-arrival probability density function in mobile environment. Signal Processing, 87, 1314–1325.

    Article  MATH  Google Scholar 

  24. Pedersen, K. I., Mogensen, P. E., & Fleury, B. H. (2000). A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments. IEEE Transactions on Vehicular Technology, 49, 437–447.

    Article  Google Scholar 

  25. Le, K. N. (2009). On angle-of-arrival and time-of-arrival statistics of geometric scattering channels. IEEE Transactions on Vehicular Technology, 58, 4257–4264.

    Article  Google Scholar 

  26. ETSI EN 300 744. (2009). Digital video broadcasting (DVB); framing structure, channel coding and modulation for digital terrestrial television, v1.6.1.

  27. Oziewicz, M. (2005). On application of MUSIC algorithm to time delay estimation in OFDM channels. IEEE Transactions on Broadcasting, 51, 249–255.

    Article  Google Scholar 

  28. Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34, 276–280.

    Article  Google Scholar 

  29. Rao, B. D., & Hari, K. V. S. (1989). Performance analysis of root-MUSIC. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37, 1939–1949.

    Article  Google Scholar 

  30. Roy, R., & Kailath, T. (1989). ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37, 984–995.

    Article  Google Scholar 

  31. Shan, T.-J., Wax, M., & Kailath, T. (1985). On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33, 806–811.

    Article  Google Scholar 

  32. Pillai, S. U., & Kwon, B. H. (1989). Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37, 8–15.

    Article  MATH  Google Scholar 

  33. TR Patent 101,190. (2009). Digital video broadcasting (DVB); implementation guidelines for DVB terrestrial services; transmission aspects.

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable and constructive comments, which helped to improve the presentation of the paper. This work is partially supported by the National Science Council of Taiwan under grant no. NSC 102-2221-E-011-093 and NSC 102-2623-E-155-002-D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Chang Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, MC., Liu, HC. & Hsu, CH. Angle-of-Arrival Estimation of Multipath Signals in A Passive Coherent Location System Using OFDM-Based Illuminators. Wireless Pers Commun 77, 889–906 (2014). https://doi.org/10.1007/s11277-013-1542-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1542-9

Keywords

Navigation