Skip to main content
Log in

Relay Selection in Two-Way Cooperative Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we present a design of two-way communication system with relay selection in two-way cooperative system over cascaded Nakagami-\(m\) fading channels. In the proposed scheme, in which all terminals are in motion as mobiles or vehicles, two users first broadcast their information to relays. Then, a single relay with a minimum sum symbol error rate (SER) will be selected to broadcast the received signals back to the sources. In other words, in the selection process, we investigate a simple suboptimal min-max criterion for relay selection, where a single relay that minimizes the maximum SER of two source nodes will be selected. Specifically, we have derived expressions of cumulative distribution function and moment generating function of end-to-end signal-to-noise ratio. By using these expressions, we have analyzed the performance of considered system in terms of outage probability and SER expression. Numerical and simulation results show the validity of the proposed mathematical analysis and point out the confirmation of the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Laneman, J. N., Tse, D., & Wornell, G. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behaviour. IEEE Transactions on Information Theory, 50, 3062–3080.

    Article  MathSciNet  Google Scholar 

  2. Nabar, R. U., Bölcskei, H., & Kneubuhler, F. W. (2004). Fading relay channels: Performance limits and space-time signal design. IEEE Journal of Selected Areas in Communications, 22, 1099–1109.

    Article  Google Scholar 

  3. Abualhaol, I. Y., & Matalgah, M. M. (2011). Performance analysis of cooperative multi-carrier relay-based UAV networks over generalized fading channels. International Journal of Communication Systems, 24, 1049–1064.

    Article  Google Scholar 

  4. Xiangdong, J., Haiyang, F., Longxiang, Y., & Laiqiang, Z. (2011). Superposition coding cooperative relaying communications: Outage performance analysis. International Journal of Communication Systems, 24, 384–397.

    Article  Google Scholar 

  5. Rankov, B., & Wittneben, A. (2007). Spectral efficient protocols for half-duplex fading channels. IEEE Journal of Selected Areas in Communications, 25, 379–389.

    Article  Google Scholar 

  6. Madsen, A., & Zhang, J. (2005). Capacity bounds and power allocation for wireless relay channels. IEEE Transactions on Information Theory, 51, 2020–2040.

    Article  Google Scholar 

  7. Ahlswede, R., Cai, N., Li, S., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory, 46, 1204–1216.

    Article  MATH  MathSciNet  Google Scholar 

  8. Suraweera, H. A., Louie, R. H. Y., Li, Y. H., Karagiannidis, G. K., & Vucetic, B. (2009). Two hop amplify-and-forward transmission in mixed Rayleigh and Rician fading channels. IEEE Communications Letters, 13, 227–229.

    Article  Google Scholar 

  9. Lei, X., Fan, P., Fan, L., Wong, K. K., Larsson, E. G., & Duong, T. Q. (2011). Closed-form performance analysis of multihop amplify-and-forward transmission in Nakagami-\(m\) fading channels. IEEE Signal Processing Letters, 18, 454–457.

    Article  Google Scholar 

  10. Han, Y., Ting, S. H., Ho, C. K., & Chin, V. H. (2009). Performance bounds for two-way amplify-and-forward relaying. IEEE Transactions on Wireless Communications, 8, 432–439.

    Article  Google Scholar 

  11. Ping, J., & Ting, H. S. (2009). Rate performance of AF two-way relaying in low SNR region. IEEE Communications Letters, 13, 233–235.

    Article  Google Scholar 

  12. Bahrami, H. R., & Tho, L. N. (2011). Distributed BLAST with relay selection for multi-antenna AF relaying. International Journal of Communication Systems, 24, 473–482.

    Article  Google Scholar 

  13. Zhang, X., & Gong, Y. (2009). Adaptive power allocation in two-way amplify-and-forward relay networks. In Proceedings of IEEE ICC. Dresden, Germany.

  14. Nguyen, H. X., Nguyen, H. H., & Le-Ngoc, T. (2010) Diversity analysis of relay selection schemes for two-way wireless relay networks. [Online]. http://www.springerlink.com/content/u1x45421r7764x33/.

  15. Jing, Y. (2009). A relay selection scheme for two-way amplify-and-forward relay networks. In Proceedings of international conference wireless communicatrion signal processing (pp. 1–5).

  16. Atapattu, S., Jing, Y., Jiang, H., & Tellambura, C. (2013). Relay selection schemes and performance analysis approximations for two-way networks. IEEE Transactions on Communications, 61, 987–998.

    Article  Google Scholar 

  17. Li, Y., Louie, R. H. Y., & Vucetic, B. (2010). Relay selection with network coding in two-way relay channels. IEEE Transactions on Vehicular Technology, 59, 4489–4499.

    Article  Google Scholar 

  18. Song, L. (2011). Relay selection for two-way relaying with amplify-and-forward protocols. IEEE Transactions on Vehicular Technology, 60, 1954–1959.

    Article  Google Scholar 

  19. Kovacs, I. Z. (2002). Radio channel characterization for private mobile radio systems: Mobile-to-mobile radio link investigations. Ph.D. Thesis. Aalborg University.

  20. Andersen, J. B. (2002). Statistical distributions in mobile communications using multiple scattering. In URSI general assembly proceedings, session CBF.

  21. Salo, J., El-Sallabi, H., & Vainikainen, P. (2006). Statistical analysis of the multiple scattering radio channel. IEEE Transactions on Antennas Propagation, 54, 3114–3124.

    Article  MathSciNet  Google Scholar 

  22. Salo, J., El-Sallabi, H., & Vainikainen, P. (2006). The distribution of the product of independent Rayleigh random variables. IEEE Transactions on Antennas Propagation, 54, 639–643.

    Article  MathSciNet  Google Scholar 

  23. Erceg, V., Fortune, S. J., Ling, J., Rustako, A., & Valenzuela, R. (1997). Comparisons of computer-based propagation prediction tool with experimental data collected in urban microcellular environments. IEEE Journal on Selected Areas in Communications, 15, 677–684.

    Article  Google Scholar 

  24. Uysal, M. (2005). Maximum achievable diversity order for cascaded Rayleigh fading channels. IET Electronics Letters, 41, 1289–1290.

    Article  Google Scholar 

  25. Ilhan, H., Uysal, M., & Altunbas, I. (2009). Cooperative diversity for inter-vehicular communication: performance analysis and optimization. IEEE Transactions on Vehicular Technology, 58(7), 3301–3310.

    Article  Google Scholar 

  26. Ilhan, H., Altunbas, I., & Uysal, M. (2010). Novel distributed space-time trellis codes for relay systems over cascaded Rayleigh fading. IEEE Communications Letters, 14, 1140–1142.

    Article  Google Scholar 

  27. Talha, B., & Patzold, M. (2011). Channel models for mobile-to-mobile cooperative communication systems: A state of the art review. IEEE Transactions on Vehicular Technology Magazine, 6, 33–43.

    Article  Google Scholar 

  28. Sepukre, M., Gozalves, J., Harri, J., & Hartenstein, H. (2011). Contextual communications congestion control for cooperative vehicular networks. IEEE Transactions on Wireless Communications, 10, 385–389.

    Article  Google Scholar 

  29. Seyfi, M., Muhaidat, S., Liang, J., & Uysal, M. (2011). Relay selection in dual-hop vehicular networks. IEEE Signal Processing Letters, 18, 134–137.

    Article  Google Scholar 

  30. Karagiannidis, G. K., Sagias, N. C., & Mathiopoulos, P. T. (2007). N*Nakagami: A novel stochastic model for cascaded fading channels. IEEE Transactions on Communications, 55, 1453–1458.

    Article  Google Scholar 

  31. Sagias, N. C., & Tombras, G. S. (2007). On the cascaded Weibull fading channel model. Journal of The Franklin Institute, 344, 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  32. Trigui, I., Laourine, A., Affes, S., & Stephenne, A. (2009). On the performance of cascaded generalized K fading channels. In IEEE GLOBECOM (pp. 1–5).

  33. Ilhan, H. (2012). Performance analysis of two-way AF relaying systems over cascaded Nakagami-\(m\) fading channels. IEEE Signal Processing Letters, 19, 332–335.

    Article  Google Scholar 

  34. Gradshteyn, I. S., & Ryzhik, M. I. (2007). Table of integrals, series and products (7th ed.). London: Academic Press.

    MATH  Google Scholar 

  35. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (2nd ed.). Hoboken, NJ: Wiley.

    Google Scholar 

  36. Hasna, M. O., & Alouini, M. S. (2004). Harmonic mean and end-to-end performance of transmission systems with relays. IEEE Transactions on Communications, 52, 130–135.

    Article  Google Scholar 

  37. Adamchik, V. S., & Marichov, O. I. (1990). The algorithm for calculating integrals of hypergeometric type functions and its realizations in REDUCE system. In Proceedings of the international conference on symbolic and algebraic computation. Tokyo, Japan.

  38. http://functions.wolfram.com/HypergeometricFunctions/MeijerG/.

  39. David, H. A. (1970). Order statistics. Hoboken, NJ: Wiley.

    MATH  Google Scholar 

  40. McKay, M. R., Grant, A. J., & Collings, I. B. (2007). Performance analysis of MIMO-MRC in double-correlated Rayleigh environments. IEEE Transactions on Communications, 55, 497–507.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haci Ilhan.

Additional information

The work of Haci Ilhan was supported by the Scientific and Technological Research Council of Turkey under Project 113E229.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilhan, H. Relay Selection in Two-Way Cooperative Systems. Wireless Pers Commun 77, 1329–1341 (2014). https://doi.org/10.1007/s11277-013-1583-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1583-0

Keywords

Navigation