Skip to main content
Log in

An Equivalent Circuit Model for Broadband Modified Rectangular Microstrip-Fed Monopole Antenna

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A new, simple equivalent circuit model for designing a multi-mode/broadband modified rectangular microstrip-fed monopole antennas using stepped cut at four corners (SCFC) method has been presented in this paper. The SCFC method is a method in which the four corners at the edges of the patch are cut for the purpose of designing the microstrip-fed monopole antenna. The design procedure of a single mode to a broadband microstrip-fed monopole antenna is explained in order to help understand more about the proposed equivalent circuit model and SCFC method. The computer simulation technology (CST) microwave studio and advanced design system (ADS) software are used to design and simulate of the proposed microstrip-fed monopole antennas and their equivalent circuit model, respectively. The operating bandwidth of the broadband antenna with \(\hbox {S}_{11}< -10\) dB, covers the operating frequency range from 0.9 to 2.6 GHZ that it is suitable for GSM (0.9 GHz), WiFi (2.4 GHz) and LTE (2.6 GHz) applications. For the purpose of validating the simulated results, the antennas prototype has been fabricated and measured. The comparison of the measurement and simulation results shows that, there is a good agreement between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kumar, G., & Ray, K. P. (2003). Broadband microstrip antennas. Boston: Artech House.

    Google Scholar 

  2. Lee, K. F., & Chen, W. (1997). Advances in microstrip and printed antennas. New York: Wiley.

    Google Scholar 

  3. Pouyanfar, N., & Rezaeieh, S. A. (2012). Compact UWB antenna with inverted hat shaped resonator and shortening via pins for filtering properties. Progress in Electromagnetics Research Letters, 33, 187–196.

    Article  Google Scholar 

  4. Xu, H.-Y., Zhang, H., Lu, K., & Zeng, X.-F. (2011). A holly-leaf-shaped monopole antenna with low RCS for UWB application. Progress in Electromagnetics Research, 117, 35–50.

    Google Scholar 

  5. Chen, Z., Ban, Y. L., Chen, J. H., Li, J. L. W., & Wu, Y. J. (2012). Bandwidth enhancement of LTE/WWAN printed mobile phone antenna using slotted ground structure. Progress in Electromagnetics Research, 129, 469–483.

    Article  Google Scholar 

  6. Zhou, D., Gao, S., Zhu, F., Abd-Alhameed, R. A., & Xu, J. D. (2012). A simple and compact planar ultra wide-band antenna with single or dual band-notched characteristics. Progress in Electromagnetics Research, 123, 47–65.

    Article  Google Scholar 

  7. Liu, J., Esselle, K. P., Hay, S. G., & Zhong, S. S. (2012). Study of an extremely wideband monopole antenna with triple band-notched characteristics. Progress in Electromagnetics Research, 123, 143–158.

    Article  Google Scholar 

  8. Chen, Y., Yang, S., & Nie, Z. (2012). A novel wideband antenna array with tightly coupled octagonal ring elements. Progress in Electromagnetics Research, 124, 55–70.

    Article  Google Scholar 

  9. Islam, M. T., Azim, R., & Mobashsher, A. T. (2012). Triple band-notched planar UWB antenna using parasitic strips. Progress in Electromagnetics Research, 129, 161–179.

    Article  Google Scholar 

  10. Gujra, M., Li, J. L.-W., Yuan, T., & Qiu, C.-W. (2012). Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feed line. Progress in Electromagnetics Research, 127, 79–92.

    Article  Google Scholar 

  11. Elsheakh, D. N., Elsadek, H. A., & Abdallah, E. A. (2011). Ultra-wide bandwidth microstrip monopole antenna by using electromagnetic band-gap structures. Progress in Electromagnetics Research Letters, 23, 109–118.

    Google Scholar 

  12. Zulkifli, F. Y., Narpati, F., & Rahardjo, E. T. (2007). S-shaped patch antenna fed by dual offset electromagnetically coupled for 5–6 GHz high speed network. PIERS Online, 3(2), 163–166.

    Article  Google Scholar 

  13. Zhou, B., Li, H., Zou, X. Y., & Cui, T. J. (2011). Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials. Progress in Electromagnetics Research, 120, 235–247.

    Google Scholar 

  14. Chen, Y., Yang, S., & Nie, Z. (2010). Bandwidth enhancement method for low profile E-shaped microstrip patch antennas. IEEE Transactions on Antennas and Propagation, 58(7), 2442–2447.

    Article  Google Scholar 

  15. Pues, H. G., & Van De Capelle, A. R. (1989). An impedance matching technique for increasing the bandwidth of microstrip antennas. IEEE Transactions on Antennas and Propagation, 37(11), 1345–1354.

    Article  Google Scholar 

  16. Ban, Y. L., Chen, J. H., Ying, L. J., Li, J. L. W., & Wu, Y. J. (2012). Ultra wideband antenna for LTE/GSM/UMTS wireless USB dongle applications. Antennas and Wireless Propagation Letters, 11, 403–406.

    Article  Google Scholar 

  17. Ansarizadeh, M., Ghorbani, A., & Abd-Alhameed, R. A. (2008). An approach to equivalent circuit modeling of rectangular microstrip antennas. Progress in Electromagnetics Research B, 8, 77–86.

    Article  Google Scholar 

  18. Hou, Y., Xu, J., Yin, H.-R., Wei, Y.-Y., Yue, L.-N., Zha, G.-Q., et al. (2012). Equivalent circuit analysis of ridge-loaded folded-waveguide slow-wave structures for millimeter-wave traveling-wave tubes. Progress in Electromagnetics Research, 129, 215–229.

    Article  Google Scholar 

  19. Wang, Y., Li, J. Z., & Ran, L. X. (2008). An equivalent circuit modeling method for ultra-wideband antennas. Progress in Electromagnetics Research, PIER, 82, 433–445.

    Article  Google Scholar 

  20. MoradiKordalivand, A., & Rahman, T. A. (2013). Broadband modified rectangular microstrip patch antenna using stepped cut at four corners method. Progress in Electromagnetics Research, 137, 599–619.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Moradikordalivand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moradikordalivand, A., Rahman, T.A., Ebrahimi, S. et al. An Equivalent Circuit Model for Broadband Modified Rectangular Microstrip-Fed Monopole Antenna. Wireless Pers Commun 77, 1363–1375 (2014). https://doi.org/10.1007/s11277-013-1585-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1585-y

Keywords

Navigation