Skip to main content
Log in

Variable Cyclic Prefix for Contention-Based Wireless Access in OFDM-Based Vehicular Communication Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In vehicular environment, signal transmissions face more challenges than in indoor wireless local area systems. In such an unpredictable communication environment, multipath fading causes high bit error rate, which leads to higher dropping probability of packets. In order to reduce the dropping probability of handshaking packets without increasing the infrastructure capability, we propose to modify the traditional cyclic prefix into a variable cyclic prefix (VCP) of request-to-send and clear-to-send frames. By reducing the handshaking packet error rates, we improve the contention ability in carrier sense multiple access with collision avoidance scheme in vehicle-to-infrastructure transmission. Suitable VCP time slots and dynamically adjustable VCPs are predicted based on the analysis of appropriate environmental parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. IEEE Std 1609.3-2010. (2010). IEEE standard for wireless access in vehicular environments (WAVE)—Networking services, pp. 1–212.

  2. Kapp, S. (2002). 802.11a more bandwidth without the wires. IEEE Internet Computing, 6(4), 75–79.

    Article  Google Scholar 

  3. IEEE Standard for Information technology—Telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements. Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, IEEE Std 802.11 revision, 2007.

  4. Bianchi, G, (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on selected areas in communications, 18(3), 535–547.

    Google Scholar 

  5. Zuquete, A. (2008). Improved CSMA/CA protocol for IEEE 802.11. Next generation internet networks, 2008. (NGI 2008), April 2008.

  6. Manshaei, M. H., Cantieni, G. R., Barakat, C., & Turletti, T. ( 2005). Performance analysis of the IEEE 802.11 MAC and physical layer protocol. In Sixth IEEE international symposium world of wireless mobile and multimedia networks, 2005, (WoWMoM 2005), pp. 88–97.

  7. Wen, J.-H., Lee, S.-H., Lee, G.-R., & Chang, J.-T. (2008). Timing and delay spread estimation scheme in OFDM systems. IEEE Transactions on Consumer Electronics, 54(2), 316–320.

    Article  Google Scholar 

  8. Lin, Y.-P., & Phoong, S.-M. (2003). BER minimized OFDM systems with channel independent precoders. IEEE Transactions on Signal Processing, 51(9), 2369–2380.

    Article  Google Scholar 

  9. Ayadi, M., Khedher, H., & Tabbane, S. (2005). BER simulation for WLAN networks in realistic environment. In 12th IEEE international conference electronics, circuits and systems, 2005 (ICECS 2005), pp. 1–5, December 11–14, 2005.

  10. Martin, R. K., Ysebaert, G., & Vanbleu, K. (2007). Bit error rate minimizing channel shortening equalizers for cyclic prefixed systems. IEEE Transactions on Signal Processing, 55(6), 2605–2616.

    Article  MathSciNet  Google Scholar 

  11. Stuber, G. L. (2001). Principles of mobile communication. Dordrecht: Kluwer.

    Google Scholar 

  12. Jakes, W. C. (Ed.). (1974). Microwave mobile communications. New York: Wiley.

    Google Scholar 

  13. DRAFT standard for local and metropolitan area networks part 16: Air interface for broadband wireless access systems (revision of IEEE Std 802.16-2004 and consolidates material from IEEE Std 802.16e-2005, IEEE Std 802.16-2004/Cor1-2005, IEEE Std 802.16f-2005 and IEEE Std 802.16g-2007) P802.16Rev2/D7, October, 2008.

  14. Henkel, W., Taubock, G., Odling, P., Borjesson, P. O., & Petersson, N. (2002). The cyclic prefix of OFDM/DMT-analysis. In Broadband communications, 2002, access, transmission, networking. 2002 international Zurich, seminar, pp. 22-1–22-3, February 19–21, 2002.

  15. Hou, J., Smee, J. E., Pfister, H. D., & Tomasin, S. (2006). Implementing interference cancellation to increase the EV-DO Rev a reverse link capacity. IEEE Communications Magazine, 44(2), 58–64.

    Article  Google Scholar 

  16. Bhattacharyya, B., Misra, I. S., & Sanyal, S. K. (2011). Optimization of error performance in a WiMAX transceiver using novel adaptive cyclic prefix strategy, 2011. In 14th international conference on computer and information technology (ICCIT), pp. 245–250, December 2011.

  17. Bakker, J. D. (2002). Eliminating the OFDM cyclic prefix personal, indoor and mobile radio communications. In The 13th IEEE international symposium (Vol. 2, pp. 834–837), September 15–18, 2002.

  18. Tang, T., & Heath, R. W., Jr. (2005). Space-time interference cancellation in MIMO-OFDM systems. IEEE Transactions on Vehicular Technology, 54(5), 1802–1816.

    Google Scholar 

  19. Pahlavan, K., & Levesque, A. H. (1995). Wireless information networks. New York: Wiley.

    Google Scholar 

  20. Huang, Y., & Rao, B. D. (2012). Awareness of channel statistics for slow cyclic prefix adaptation in an OFDMA system. IEEE Wireless Communications Letters, 1(4), 332–335.

    Article  Google Scholar 

  21. Tsiftsis, T. A. (2011). On the performance of cyclic prefix-based single-carrier cooperative diversity systems with best relay selection. IEEE Transactions on Wireless Communications, 10(4), 1269–1279.

    Article  Google Scholar 

  22. 3rd Generation Partnership Project. (2008). Technical specification group radio access networks; deployment aspects (release 8). Technical report 3GPP TR 25.943 V8.0.0, December 2008.

Download references

Acknowledgments

Our gratitude goes to Hung-Lin Chan for discussion about some issues of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alagan Anpalagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, TY., Anpalagan, A., Lee, WT. et al. Variable Cyclic Prefix for Contention-Based Wireless Access in OFDM-Based Vehicular Communication Systems. Wireless Pers Commun 77, 1905–1922 (2014). https://doi.org/10.1007/s11277-014-1615-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1615-4

Keywords

Navigation