Skip to main content
Log in

Joint Estimation of TOA and DOA in IR-UWB System Using a Successive MUSIC Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Time-of-arrival (TOA) and direction-of-arrival (DOA) are key parameters in the impulse radio ultra wideband (IR-UWB) positioning system with a two-antennas receiver. A two-dimensional (2D) multiple signal classification (MUSIC) algorithm, which requires the 2D spectral peak search, can be used to estimate the parameters, but it has much higher computational complexity. This paper proposes a successive MUSIC algorithm for joint TOA and DOA estimation in IR-UWB system to avoid 2D spectral peak search. The proposed algorithm obtains the initial estimate of TOA corresponding to the first antenna via Root-MUSIC, and simplifies the 2D global search into successive one-dimensional searches to achieve the estimation of TOAs in the two antennas. It then estimates the DOA parameters via the difference of the TOAs between the two antennas. The proposed algorithm can get the parameters paired automatically, and has a much lower complexity than 2D-MUSIC algorithm. In addition, we have derived the mean square error of TOA and DOA estimation of the proposed algorithm and the Cramer–Rao bound of TOA and DOA estimation in the paper. The simulation results show that the parameter estimation performance of the proposed algorithm is better than that of Root-MUSIC, and is almost the same as that of 2D-MUSIC algorithm. Moreover, it has much better performance than matrix pencil algorithm, propagator method and estimation of signal parameters via rotational invariance techniques algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yang, L. Q., & Giannakis, G. B. (2004). Ultra-wide band communications: An idea whose time has come. IEEE Signal Processing Magazine, 21(6), 26–54.

    Article  Google Scholar 

  2. Yang, L. M., Xu, Z. Y., Su, W. M., et al. (2010). Ultra-wideband radar clutter modeling and simulation based on sub-band synthesis. Journal of Electronics & Information Technology, 32(9), 2172–2178.

    Article  Google Scholar 

  3. Sakamoto, T., & Sato, T. (2010). A target tracking method with a single antenna using time-reversal UWB radar imaging in a multi-path environment. In IEEE international geoscience and remote sensing symposium (IGARSS) (pp. 3319–3322).

  4. Luo, Y., & Law, C. L. (2012). Indoor positioning using UWB-IR signals in the presence of dense multipath with path overlapping. IEEE Transactions on Wireless Communication, 11(10), 3734–3743.

    Article  Google Scholar 

  5. Kuhn, M. J., Mahfouz, M. R., Rowe, N., et al. (2012). Ultra wideband 3-D tracking of multiple tags for indoor positioning in medical applications requiring millimeter accuracy. In IEEE topical conference on biomedical wireless technologies, networks, and sensing systems (BioWireleSS) (pp. 57–60).

  6. Rovnakova, J., & Kocur, D. (2011). Short range tracking of moving persons by UWB sensor network. In European Radar Conference (EuRAD) (pp. 321–324).

  7. Patwari, N., Ash, J. N., Kyperountas, S., et al. (2005). Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine, 22(4), 54–69.

    Article  Google Scholar 

  8. Wu, S. H., Zhang, Q. Y., & Zhang, N. T. (2009). TOA estimation based on match-filtering detection for UWB wireless sensor networks. Journal of Software, 20(11), 3010–3022.

    Article  Google Scholar 

  9. Guvenc, I., & Sahinoglu, Z. (2005). Threshold-based TOA estimation for impulse radio UWB systems. In IEEE international conference on ultra-wideband (ICU 2005) (pp. 420–425).

  10. Zhang, T. T., Zhang, Q. Y., & Zhang, N. T. (2009). A two-step TOA estimation method based on energy detection for IR-UWB sensor networks. In Communication networks and services research conference, Moncton, NB, Canada (pp. 139–145).

  11. Li, J., Pei, L., Cao, M. Y., & Yu, D. Y. (2006). Super-resolution TOA algorithm in multi-path environments. Chinese Journal of Radio Science, 21(5), 771–776.

    Google Scholar 

  12. Li, X. R., & Pahlavan, K. (2004). Super-resolution TOA estimation with diversity for indoor geolocation. IEEE Transactions on Wireless Communications, 3(1), 224–234.

    Article  Google Scholar 

  13. Saarnisaari, H. (1997). TLS-ESPRIT in a time delay estimation. In 47th IEEE vehicular technology conference (pp. 1619–1623).

  14. Jiang, H., Cao, F. C., & Ding, R. (2008). Propagator method-based TOA estimation for UWB indoor environment in the presence of correlated fading amplitudes. In 4th IEEE international conference on circuits and systems for communications (ICCSC 2008) (pp. 535–538).

  15. Ding, R., Qian, Z. H., & Wang, X. (2010). UWB positioning system based on joint TOA and DOA estimation. Journal of Electronics & Information Technology, 32(2), 313–317.

    Article  Google Scholar 

  16. Keshavarz, H. (2005). Weighted signal-subspace direction-finding of ultra-wideband sources. In IEEE international conference on wireless and mobile computing, networking and communications (WiMob’2005) (pp. 23–29).

  17. Lie, J. P., See, C. M., & Ng, B. P. (2006). Ultra wideband direction finding using digital channelization receiver architecture. IEEE Communications Letters, 10(2), 85–87.

    Article  Google Scholar 

  18. Lagunas, E., Najar, M., & Navarro, M. (2010). Joint TOA and DOA estimation compliant with IEEE 802.15.4a Standard. In ISWPC’10 proceedings of the 5th IEEE international conference on wireless pervasive computing (pp. 157–162).

  19. Navarro, M., & Najar, M. (2011). Frequency domain joint TOA and DOA estimation in IR-UWB. IEEE Transactions on Wireless Communications, 10(10), 3174–3184.

    Article  Google Scholar 

  20. Taponecco, L., D’Amico, A., & Mengali, U. (2011). Joint TOA and AOA estimation for UWB localization applications. IEEE Transactions on Wireless Communications, 10(7), 2207–2217.

    Article  Google Scholar 

  21. He, J., Swamy, M. N. S., & Omair Ahmad, M. (2011). Joint DOD and DOA estimation for MIMO array with velocity receive sensors. IEEE Signal Processing Letters, 18(7), 399–402.

    Google Scholar 

  22. Saleh, A. A. M., & Valenzuela, R. A. (1987). A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications, 5(2), 128–137.

    Article  Google Scholar 

  23. Kaveh, M., & Barabell, A. J. (1986). The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise. IEEE Transactions on Acoustics, Speech and Signal Processing, 34(2), 331–341.

    Article  Google Scholar 

  24. Jeffries, D. J., & Farrier, D. R. (1985). Asymptotic results for eigenvector methods. IEE Proceedings F Communications, Radar and Signal Processing, 132(7), 589–594.

    Article  Google Scholar 

  25. Stoica, P., & Nehorai, A. (1989). MUSIC, maximum likelihood, and Cramer–Rao bound. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(5), 720–741.

    Article  MATH  MathSciNet  Google Scholar 

  26. Stoica, P., & Nehorai, A. (1990). Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Transactions on Acoustics, Speech and Signal Processing, 38(10), 1783–1795.

    Article  MATH  Google Scholar 

  27. Molisch, A. F., Balakrishnan, K., Chong, C.-C., et al. (2004). IEEE 802.15.4a channel model—Final report. IEEE P802.

  28. Molisch, A. F., Cassioli, D., Chong, C.-C., et al. (2006). A comprehensive standardized model for ultrawideband propagation channels. IEEE Transactions on Antennas and Propagation, 54(11), 3151–3166.

    Article  Google Scholar 

  29. Conroy, J. T., LoCicero, J. L., & Ucci, D. R. (1999). Communication techniques using monopulse waveforms. IEEE Military Communications Conference Proceedings, 2, 1181–1184.

    Google Scholar 

  30. Ghavami, M., Michael, L. B., Haruyama, S., et al. (2002). A novel UWB pulse shape modulation system. Wireless Personal Communications, 23(1), 105–120.

    Article  Google Scholar 

  31. Win, M. Z., & Scholtz, R. A. (2000). Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Transactions on Communications, 48(4), 679–691.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Fundamental Research Funds for the Central Universities (NS2013024), Jiangsu Planned Projects for Postdoctoral Research Funds (1201039C), China Postdoctoral Science Foundation (2012M521099, 2013M541661), Open project of key laboratory of underwater acoustic communication and marine information technology (Xiamen University), Hubei Key Laboratory of Intelligent Wire1ess Communications (IWC2012002),Open project of Key Laboratory of modern acoustic of Ministry of Education (Nanjing University), the Aeronautical Science Foundation of China (20120152001), Research Innovation Program for College Graduates of Jiangsu Province (CXZZ13_0165), Funding for Outstanding Doctoral Dissertation in NUAA (BCXJ13-09), Qing Lan Project, priority academic program development of Jiangsu high education institutions and the Fundamental Research Funds for the Central Universities (NZ2012010, NS2013024, kfjj130114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Zhang, X. & Wang, F. Joint Estimation of TOA and DOA in IR-UWB System Using a Successive MUSIC Algorithm. Wireless Pers Commun 77, 2445–2464 (2014). https://doi.org/10.1007/s11277-014-1644-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1644-z

Keywords

Navigation