Skip to main content
Log in

Fair and Efficient Spectrum Resource Allocation and Admission Control for Multi-user and Multi-relay Cellular Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper studies the joint relay selection and spectrum allocation problem for multi-user and multi-relay cellular networks, and per-user fairness and system efficiency are both emphasized. First, we propose a new data-frame structure for relaying resource allocation. Considering each relay can support multiple users, a \(K\)-person Nash bargaining game is formulated to distribute the relaying resource among the users in a fair and efficient manner. To solve the Nash bargaining solution (NBS) of the game, an iterative algorithm is developed based on the dual decomposition method. Then, in view of the selection cooperation (SC) rule could help users achieve cooperation diversity with minimum network overhead, the SC rule is applied for the user-relay association which restricts relaying for a user to only one relay. By using the Langrangian relaxation and the Karush–Kuhn–Tucker condition, we prove that the NBS result of the proposed game just complies with the SC rule. Finally, to guarantee the minimum rate requirements of the users, an admission control scheme is proposed and is integrated with the proposed game. By comparing with other resource allocation schemes, the theoretical analysis and the simulation results testify the effectiveness of the proposed game scheme for efficient and fair relaying resource allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Inforamtion Theory, 50, 3062–3080.

    Article  MathSciNet  Google Scholar 

  2. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.

    Article  Google Scholar 

  3. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—part II: Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.

    Article  Google Scholar 

  4. Riihonen, T., Werner, S., & Wichman, R. (2011). Hybrid full-duplex half-duplex relaying with transmit power adaptation. IEEE Transactions on Wireless Communications, 10(9), 3074–3085.

    Article  Google Scholar 

  5. Zhang, Z., Shi, J., Chen, H.-H., Guizani, M., & Qiu, P. (2008). A cooperation strategy based on Nash bargaining solution in cooperative relay networks. IEEE Transactions on Vehicular Technology, 57(4), 2570–2577.

    Article  Google Scholar 

  6. Mesbah, W., & Davidson, T. N. (2008). Joint power and channel resource allocation for two-user orthogonal amplify-and-forward cooperation. IEEE Transactions on Wireless Communications, 7(11), 4681–4691.

    Article  Google Scholar 

  7. Shen, Y., Feng, G., Yang, B., & Guan, X. (2011). Distributed fair resource allocation in wireless multi-user multi-relay networks with heterogeneous rate constraints. In Proceedings of the IEEE ISCIT (pp. 333–338). Hangzhou, China, Oct 12–14.

  8. Zhang, G., Zhang, H., Zhao, L., Wang, W., & Cong, L. (2009). Fair resource sharing for cooperative relay networks using Nash bargaining solutions. IEEE Communication Letters, 13(6), 381–383.

    Article  Google Scholar 

  9. Vardhe, K., Reynolds, D., & Woerner, B. D. (2010). Joint power allocation and relay selection for multiuser cooperative communication. IEEE Transactions on Wireless Communications, 9(4), 1255–1260.

    Article  Google Scholar 

  10. Ma, K., Liu, Z., & Guan, X. (2010). Joint relay selection and power allocation for cooperative cellular networks. Springer Wireless Personal Communications, 64(2), 305–321.

    Article  Google Scholar 

  11. Zhang, G., Yang, K., & Liu, P. (2012). Fair and efficient relay selection and spectrum allocation for multi-user and multi-relay cooperative cellular networks. IEEE Communications Letters, 16(10), 1532–1535.

    Article  MathSciNet  Google Scholar 

  12. Shen, Y., Feng, G., Yang, B., & Guan, X. (2010). Fair resource allocation and admission control in wireless multiuser amplify-and-forward relay networks. IEEE Transactions on Vehicular Technology, 61(3), 1383–1397.

    Article  Google Scholar 

  13. Hossain, E., Kim, D. I., & Bhargava, V. K. (2011). Cooperative cellular wireless networks. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  14. Cong, L., Zhao, L., Zhang, H., Yang, K., Zhang, G., & Zhu, W. (2011). Pricing-based game for spectrum allocation in multi-relay cooperative transmission networks. IET Communications, 5(4), 563–573.

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhang, G., Cong, L., Zhao, L., Yang, K., & Zhang, H. (2009). Competitive resource sharing based on game theory in cooperative relay networks. ETRI Journal, 31(1), 89–91.

    Article  Google Scholar 

  16. Zhang, G., Yang, K., Liu, P., Ding, E., & Zhong, Y. (2012). Joint channel bandwidth and power allocation game for selfish cooperative relaying networks. IEEE Transactions on Vehicular Technology, PP(99), 1–14.

    Google Scholar 

  17. Beres, E., & Adve, R. (2008). Selection cooperation in multi-source cooperative networks. IEEE Transactions on Wireless Communications, 7(1), 118–127.

    Article  Google Scholar 

  18. Zhao, Y., Adve, R., & Lim, T. J. (2007). Improving amplify-and-forward relay networks: optimal power allocation versus selection. IEEE Transactions on Wireless Communications, 6(8), 3114–3123.

    Google Scholar 

  19. Bletsas, A., Khisti, A., Reed, D., & Lippman, A. (2006). A simple cooperative diversity method based on network path selection. IEEE Journal of Selected Areas in Communications, 24(3), 659–672.

    Article  Google Scholar 

  20. Wang, B., Han, Z., & Liu, K. J. R. (2009). Distributed relay selection and power control for multiuser cooperative communication networks using Stackelberg game. IEEE Transactions on Mobile Computing, 8(7), 975–990.

    Article  Google Scholar 

  21. Huang, J., et al. (2008). Auction-based resource allocation for cooperative communications. IEEE Journal of Selected Areas in Communications, 26(7), 1226–1237.

    Article  Google Scholar 

  22. Hong, Y.-W., Huang, W.-J., Chiu, F.-H., & Kuo, C.-C. (2007). Cooperative communications in resource-constrained wireless networks. IEEE Signal Processing Magazine, 24(3), 47–57.

    Article  Google Scholar 

  23. Ngo, H. Q., Quek, Q. S., & Shin, H. (2010). Amplify-and-forward two-way relay networks: Error exponents and resource allocation. IEEE Transactions on Communications, 58(9), 2653–2666.

    Article  Google Scholar 

  24. Cui, S., Goldsmith, A. J., & Bahai, A. (2004). Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal of Selected Areas in Communications, 22(6), 1089–1098.

    Article  Google Scholar 

  25. Yaiche, H., Mazumdar, R. R., & Rosenberg, C. (2000). A game theoretic framework for bandwidth allocation and pricing in broadband networks. IEEE/ACM Transactions on Networking, 8(5), 667–678.

    Article  Google Scholar 

  26. Park, H., & Schaar, M. V. D. (2007). Bargaining strategies for networked multimedia resource management. IEEE Transactions on Signal Processing, 55, 3496–3511.

    Article  MathSciNet  Google Scholar 

  27. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. London: Cambridge University Press.

    Book  MATH  Google Scholar 

  28. Perez-Romero, J., Sallent, O., Agusti, R., Giupponi, L. (2007). A novel on-demand cognitive pilot channel enabling dynamic spectrum allocation. In Proceedings of the 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks (DYSPAN ’07) (pp. 46–54). Dublin, Ireland.

  29. Jang, J., & Lee, K. B. (2003). Transmit power adaptation for multiuser OFDM systems. IEEE Journal on Areas in Communications, 21, 171–178.

    Article  Google Scholar 

  30. Park, H., & Schaar, M. V. D. (2007). Bargaining strategies for networked multimedia resource management. IEEE Transactions on Signal Processing, 55, 3496–3511.

    Article  MathSciNet  Google Scholar 

  31. Johansson, B., Soldati, P., & Johansson, M. (2006). Mathematical decomposition techniques for distributed cross-layer optimization of data networks. IEEE Journal of Selected Areas in Communications, 24(8), 1535–1547.

    Article  Google Scholar 

  32. Bertsekas, Nonlinear. (1999). Programming. Belmont, MA: Athena Scientific.

    MATH  Google Scholar 

  33. Song, G., & Li, Y. (2005). Cross-layer optimization for OFDM wireless networks Part II: Algorithm development. IEEE Transactions on Wireless Communications, 4(2), 625–634.

    Article  MathSciNet  Google Scholar 

  34. Gong, X., Vorobyov, S. A., & Tellambura, C. (2011). Joint bandwidth and power allocation with admission control in wireless multi-user networks with and without relaying. IEEE Transactions on Signal Processing, 59(4), 1801–1813.

    Article  MathSciNet  Google Scholar 

  35. Jain, R., Chiu, D. M., Hawe, W. R. (1984). A quantitative measure of fairness and discrimination for resource allocation shared computer systems. Digital Equipment Corporation technical report TR-301.

Download references

Acknowledgments

The work of G. Zhang and P. Liu was supported by the China Fundamental Research Funds for the Central Universities (2014QNA82), the Natural Science Foundation of Jiangsu Province of China (BK2012141), and the Post Doctoral Fellowship Program of the China Scholarship Council. The work of Kun Yang and Dongdai Zhou was supported by the UKEPSRC Project DANCER (EP/K002643/1), the EU FP7 Project MONICA (GA-2011-295222) and CLIMBER (GA-2012-318939).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Liu.

Appendices

Appendix 1

Proof of Proposition 1

Based on the fixed transmission power and full CSI assumptions made in Sect. 2, the values of \(\gamma _{k,\mathrm{bs}} \) in (3), \(\gamma _{k,m} \) and \(\gamma _{m,\mathrm{bs}} \) in (11), and, hence, the values of \(\Gamma _{k,m,\mathrm{bs}}^{\mathrm{HD+AF+MRC}} \) in (13), \(R_{k,m,\mathrm{bs}}^{\mathrm{HD+AF+MRC}} \) in (14), \(R_k^{\mathrm{DT(HD)}} \) in (20) and \(R_k^{\mathrm{AVG}} \) in (19) can be regarded as constants within a cycle of optimization.

To prove set \(\mathcal{R}\) is convex, according to [25], we need to prove that for any \(\mathbf{R}^{\mathrm{AVG}(a)}=\left( {R_1^{\hbox {AVG(}a\hbox {)}} ,\ldots ,R_K^{\mathrm{AVG}(a)} } \right) \in \mathcal{R}\) and \(\mathbf{R}^{\mathrm{AVG}(b)}=\left( {R_1^{\mathrm{AVG}(b)} ,\ldots ,R_K^{\mathrm{AVG}(b)} } \right) \in \mathcal{R}\), and, any \(\theta \) with \(0\le \theta \le 1\), we have \(\theta \mathbf{R}^{\mathrm{AVG}(a)}+\left( {1-\theta } \right) \mathbf{R}^{\mathrm{AVG}(b)}\in \mathcal{R}\).

For \(\forall k\in \mathcal{K}\), after some simple derivation, we can get

$$\begin{aligned} \theta R_k^{\mathrm{AVG}(a)} +(1-\theta )R_k^{\mathrm{AVG}(b)}&= \frac{1}{N}\sum _{m=1}^M {\left( {\theta t_{m,k}^{(a)} +\left( {1-\theta } \right) t_{m,k}^{(b)} } \right) \left( {R_{k,m,\mathrm{bs}}^{\mathrm{HD-AF}} -R_k^{\mathrm{DT(HD)}} } \right) }\nonumber \\&\quad +R_k^{\mathrm{DT(HD)}} \end{aligned}$$
(61)

Since \(0\le t_{m,k}^{(a)} \le N, 0\le t_{m,k}^{(b)} \le N\), and \(0\le \theta \le 1\), it is easy to derive

$$\begin{aligned} 0\le \theta t_{m,k}^{(a)} +\left( {1-\theta } \right) t_{m,k}^{(b)} \le N \end{aligned}$$
(62)

Now, comparing (61) with (19), we know that, for \(\forall k\in \mathcal{K}, \theta R_k^{\mathrm{AVG}(a)} +(1-\theta )R_k^{\mathrm{AVG}(b)} \) has the same value space as \(R_k^{\mathrm{AVG}} \), and, hence, \(\theta \mathbf{R}^{\mathrm{AVG}(a)}+\left( {1-\theta } \right) \mathbf{R}^{\mathrm{AVG}(b)}\in \mathcal{R}\). Therefore, we can conclude that \(\mathcal{R}\) is a convex set, and, this completes the proof.

Appendix 2

Proof of Proposition 2

For the strict concave function \(U\left( {\mathbf{R}^{\mathrm{AVG}}} \right) =\ln \left( {1+\mathbf{R}^{\mathrm{AVG}}} \right) , {\hat{\mathbf{R}}}^{\mathrm{AVG}}\) is optimal if and only if

$$\begin{aligned} \nabla U\left( {\mathbf{R}^{\mathrm{AVG}}} \right) ^{\mathrm{Tr}}\left( {\mathbf{R}^{\mathrm{AVG}}-{\hat{\mathbf{R}}}^{\mathrm{AVG}}} \right) \le 0, \quad \forall \mathbf{R}^{\mathrm{AVG}}\in \mathcal{R} \end{aligned}$$
(63)

where “Tr” is the matrix transpose operator, and \(\nabla U\left( {\mathbf{R}^{\mathrm{AVG}}} \right) =\left[ {{U}'_1 (t_{m,1} ),\ldots ,{U}'_K (t_{m,K} )} \right] ^{\mathrm{Tr}}\). As logarithmic function \(U_k =\ln \left( {1+R_k^{\mathrm{AVG}} } \right) , \forall k\in \mathcal{K}\), is used, so we have

$$\begin{aligned} {U}'_1 (t_{m,1} )&= \frac{R_{k,m,\mathrm{bs}}^{\mathrm{FD+AF+MRC}} -R_k^{\mathrm{DT(HD)}} +N\cdot R_k^{\mathrm{DT(HD)}} }{1+R_k^{\mathrm{AVG}}}\nonumber \\&= \frac{R_{k,m,\mathrm{bs}}^{\mathrm{FD+AF+MRC}} +\left( {N-1} \right) \cdot R_k^{\mathrm{DT(HD)}} }{1+R_k^{\mathrm{AVG}} }>0, \quad \forall k\in \mathcal{K} \end{aligned}$$
(64)

Considering \(R_k^{\mathrm{AVG}} >0\), for \(\forall k\in \mathcal{K}\), hence, (63) is identical to (24). It indicates that the PF condition is guaranteed, and this completes the proof.

Appendix 3

Proof of Proposition 3

Since the problem (23) is convex and the inequality constraint functions, i.e., the first and the third constraints in problem (23) are affine, according to [27], we only need to prove that there exists a point \(\mathbf{{S}'}=[{t}'_{m,k} ]_{M\times K} \in \mathbf{relint}\mathcal{S}\), where \(\mathcal{S}\) denotes the feasible set for the resource allocation matrix and \(\mathbf{relint}\mathcal{S}\) denotes the relative interior of set \(\mathcal{S}\), such that

$$\begin{aligned} \sum _{m=1}^M {{t}'_{m,k} } -N<0, \quad -{t}'_{m,k} <0\,\hbox {and} \sum _{k=1}^K {{t}'_{m,k} } -N=0 \end{aligned}$$
(65)

For the second constraint in problem (23), we consider \({t}'_{m,k} =1/N\) for \(\forall m\in \mathcal{M}\). Then, the second and the third trivial conditions, i.e., \(-{t}'_{m,k} <0\) and \(\sum _{k=1}^K {{t}'_{m,k} } -N=0\) in (23) are satisfied. And, since the number of users, \(K\), will be much larger than the number of relays, \(M\) in practical relay based cellular networks, we then have

$$\begin{aligned} \sum _{m=1}^M {{t}'_{m,k} } -N=M\cdot \frac{N}{K}-N=\left( {\frac{M}{K}-1} \right) N<N \end{aligned}$$
(66)

It means that the last trivial condition in (23) is also satisfied. So, we can conclude that the Slater’s condition, and, hence, the strong duality is satisfied by the primal problem (23). This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Yang, K., Liu, P. et al. Fair and Efficient Spectrum Resource Allocation and Admission Control for Multi-user and Multi-relay Cellular Networks. Wireless Pers Commun 78, 347–373 (2014). https://doi.org/10.1007/s11277-014-1757-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1757-4

Keywords

Navigation