Skip to main content
Log in

Closed-Form Error Analysis of AF-CARQ with CSI-Assisted Relay over Nakagami-\(m\) Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents a new Amplify-and-Forward Cooperative Automatic Repeat reQuest protocol with channel state information-assisted relay which is more suitable for the only-read access networks. The channels of any pair of terminations are quasi static flat Nakagami-\(m\) fading channels, which are mutually independent and non-identically distributed. Assuming that the coherent equal gain combining is adopted to combine the retransmitted signals from the same link at the destination and selective combining is adopted to the signals from different links. Based on the approximation of product of Nakagami-\(m\) variables, we obtain the end-to-end signal-to-noise rate of any link. The closed-form expression of the average bit error rate for several modulation schemes is obtained by analyzing cumulative distribution function (CDF) and Gaussian Q-function. Then we analyze the amount of fading of the fading channels by the \(n\) order moment which is obtained by CDF. Numerical simulation results show that the relay node can resist the fading of system effectively comparing with the system without relay node. And with the increasing of the number of transmission, the performance advantage of relay link is more and more obviously. It is better to let the maximum transmission time \(F=6\), which is very useful for improving the transmission efficiency of the truncated ARQ system. The maximum reduction of amount of fading can be reached when \(t=3\), if the total number of transmission is \(f=6\). The number of bits in the frame should not have too big.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE on Communications Magazine, 42(10), 74–80.

    Article  Google Scholar 

  2. Wang, S., Huang, S., & Liu, Y. (2012). Queuing analysis in amplify-and-forward cooperative diversity wireless networks with random feedback delay. AEU-International Journal of Electronics and Communications, 66(5), 410–416.

    MathSciNet  Google Scholar 

  3. Li, J., & Zhao, Y. Q. (2009). Packet delay analysis for multichannel communication systems with MSW-ARQ. Performance Evaluation, 66(7), 380–394.

    Article  Google Scholar 

  4. Cho, H., Lee Chanyong, I., Hwang, G. U. (2008). Performance analysis of single relay cooperative ARQ protocol under time correlated Rayleigh fading channel. In New technologies, mobility and security, NTMS’08 (pp. 1–6).

  5. Chen, H., Cai, Y., Yang, W., & Zhang, D. (2012). Throughput and energy efficiency of a novel cooperative ARQ strategy for wireless sensor networks. Computer Communications, 35(9), 1064–1073.

    Article  Google Scholar 

  6. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (2nd ed.). New York: Wiley.

    Google Scholar 

  7. Salahat, E., & Abualhaol, I. (2013). General BER analysis over Nakagami-m fading channels. Wireless and Mobile Networking Conference (WMNC), 2013(6), 1–4.

    Article  Google Scholar 

  8. Xu, W, X., Lin, J., & Niu, K. (2010). Performance analysis of cooperative ARQ with code combining over Nakagami-m fading channels. Wireless Personal Communications, 54(4), 559–578.

  9. Alouini, M. S., Abdi, A., & Kaveh, M. (2001). Sum of gamma variates and performance of wireless communication systems over Nakagami fading channels. IEEE Transactions on Vehicular Technology, 50(6), 1471–1480.

    Article  Google Scholar 

  10. Hasna, M. O., & Alouini, M. S. (2004). A performance study of dual-hop transmissions with fixed gain relays. IEEE Transactions on Wireless Communications, 3(6), 1963–1968.

    Article  Google Scholar 

  11. Li, S., & Wu, k. (2013). MGF performance analysis of AF-CARQ with blind relay over Nakagami-\(m\) fading channels. Journal of Information & Computational Science, 13(10), 4205–4212.

  12. Xia, M., & Aissa, S. (2012). Moments based framework for performance analysis of one-way/two-way CSI-assisted AF relaying. IEEE Journal on Selected Areas in Communications, 30(8), 1464–1476.

    Article  Google Scholar 

  13. Gradshteyn, I. S., & Ryzhik, I. M. (1994). Table of intergrals, series, and products (5th ed.). San Diego, CA: Academic Press.

    Google Scholar 

  14. Tsiftsis, T. A., Karagiannidis, G. K., Mathiopoulos, P. T., & Kotsopoulos, S. A. (2006). Nonregenerative dual-hop cooperative links with selection diversity. EURASIP Journal on Wireless Communications and Networking, 2006(2), 1–8.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Grant 61167005 from the Natural Science Foundation of China, and Grant 0809RJZA019 from the Natural Science Foundation of Gansu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suoping Li.

Appendix

Appendix

1. The pdf of \(\gamma _{eq}\).

By using Eq. (8.352.4) of [13], \(F_{\gamma _{eq}}(\gamma )\) in (17) can be written as

$$\begin{aligned} F_{\gamma _{eq}}(\gamma )&= 1-\frac{1}{\varGamma (tm_0)}\varGamma (tm_0,B_0\gamma )\nonumber \\&-\sum \limits _{i=0}^{tm_1-1}\sum \limits _{j=0}^{i}\sum \limits _{k=0}^{(f-t)m_2-1}H(i,j,k) \gamma ^{i+(f-t)m_2}e^{-(B_1+B_2)\gamma }K_{k-j+1}(2\sqrt{B_1B_2}\gamma )\nonumber \\&+\sum \limits _{i=0}^{tm_1-1}\sum \limits _{j=0}^{i}\sum \limits _{k=0}^{(f-t)m_2-1}\sum _{l=0}^{tm_0-1}\nonumber \\&\qquad \times \frac{H(i,j,k)B_0^l}{l!} \gamma ^{i+(f-t)m_2+l}e^{-(B_0+B_1+B_2)\gamma }K_{k-j+1}(2\sqrt{B_1B_2}\gamma ) \end{aligned}$$
(24)

From Eqs. (8.356.4) and (8.486.12) of [13], the pdf of \(\gamma _{eq}\) can be given by taking derivation of (24),

$$\begin{aligned}&f_{\gamma _{eq2}}(\gamma )=\frac{B_0^{tm_0}}{\varGamma (tm_0)}\frac{\gamma ^{tm_0-1}}{e^{B_0\gamma }}\nonumber \\&\quad -\sum _{i=0}^{tm_1-1}\sum _{j=0}^i\sum _{k=0}^{(f-t)m_2-1}H(i,j,k)w\gamma ^{w-1}e^{-(B_1+B_2)\gamma }K_{k-j+1}\left( 2\sqrt{B_1B_2}\gamma \right) \nonumber \\&\quad +\sum _{i=0}^{tm_1-1}\sum _{j=0}^i\sum _{k=0}^{(f-t)m_2-1}H(i,j,k)\gamma ^{w}(B_1+B_2)e^{-(B_1+B_2)\gamma }K_{k-j+1}\left( 2\sqrt{B_1B_2}\gamma \right) \nonumber \\&\quad +\sum _{i=0}^{tm_1-1}\sum _{j=0}^i\sum _{k=0}^{(f-t)m_2-1}H(i,j,k)\gamma ^{w}e^{-(B_1+B_2)\gamma }2\sqrt{B_1B_2}K_{k-j}\left( 2\sqrt{B_1B_2}\gamma \right) \nonumber \\&\quad +\sum _{i=0}^{tm_1-1}\sum _{j=0}^i\sum _{k=0}^{(f-t)m_2-1}H(i,j,k)\gamma ^{w-1}e^{-(B_1+B_2)\gamma }(k-j+1)K_{k-j+1}\left( 2\sqrt{B_1B_2}\gamma \right) \nonumber \\&\quad +\sum _{i=0}^{tm_1-1}\sum _{j=0}^i\sum _{k=0}^{(f-t)m_2-1}\sum _{l=0}^{tm_0-1}\nonumber \\&\qquad \times \frac{B_0^l}{l!}H(i,j,k)(w+l)\gamma ^{w+l-1}e^{-(B_0+B_1+B_2)\gamma }K_{k-j+1}\left( 2\sqrt{B_1B_2}\gamma \right) \nonumber \\&\quad -\sum _{i=0}^{tm_1-1}\sum _{j=0}^i\sum _{k=0}^{(f-t)m_2-1}\sum _{l=0}^{tm_0-1}\nonumber \\&\quad \quad \times \frac{B_0^l}{l!}H(i,j,k)(B_0+B_1+B_2)\gamma ^{w+l}e^{-(B_0+B_1+B_2)\gamma }K_{k-j+1} \left( 2\sqrt{B_1B_2}\gamma \right) \nonumber \\&\quad -\sum _{i=0}^{tm_1-1}\sum _{j=0}^i\sum _{k=0}^{(f-t)m_2-1}\sum _{l=0}^{tm_0-1}\nonumber \\&\quad \quad \times \frac{B_0^l}{l!}H(i,j,k)\gamma ^{w+l}e^{-(B_0+B_1+B_2)\gamma }2\sqrt{B_1B_2}K_{k-j}\left( 2\sqrt{B_1B_2}\gamma \right) \nonumber \\&\quad -\sum _{i=0}^{tm_1-1}\sum _{j=0}^i\sum _{k=0}^{(f-t)m_2-1}\sum _{l=0}^{tm_0-1}\nonumber \\&\quad \quad \times \frac{B_0^l}{l!}H(i,j,k)\gamma ^{w+l-1}e^{-(B_0+B_1+B_2)\gamma }(k-j+1)K_{k-j+1}\left( 2\sqrt{B_1B_2}\gamma \right) \end{aligned}$$
(25)

where \(w=i+(f-t)m_2\).

2. The \(n\) order moment \(\mu _n\).

$$\begin{aligned} \mu _n&= \int \limits _0^\infty \gamma ^nf_{\gamma _{eq}}(\gamma )d\gamma \nonumber \\&= \frac{(tm_0+n-1)!}{\varGamma (tm_0)B_0^n}-\Theta _1+\Theta _2+\Theta _3+\Theta _4+\Theta _5-\Theta _6-\Theta _7-\Theta _8 \end{aligned}$$
(26)
$$\begin{aligned}&\Theta _1=\sum _{i=0}^{tm_1-1}\sum _{j=0}^i\sum _{k=0}^{(f-t)m_2-1}H(i,j,k)\frac{w\sqrt{\pi }(4\sqrt{B_1B_2})^{p_1}}{z_1^{w+p_1}}\frac{\varGamma (w+p_1)\varGamma (w-p_1)}{\varGamma (w+1/2)}\\&\quad \qquad \times {_2}F_1(w+p_1,p_1+1/2;w+1/2;z_2)\\&\Theta _2 = \sum _{i=0}^{tm_1-1}\sum _{j=0}^i\sum _{k=0}^{(f-t)m_2-1}H(i,j,k)(B_1+B_2)\\&\quad \qquad \times \frac{\sqrt{\pi }(4\sqrt{B_1B_2})^{p_1}}{z_1^{w+p_1+1}}\frac{\varGamma (w+p_1+1)\varGamma (w-p_1+1)}{\varGamma (w+3/2)}\\&\quad \qquad \times {_2}F_1(w+p_1+1,p_1+0.5;w+3/2;z_2)\\&\Theta _3=\sum _{i=0}^{tm_1-1}\sum _{j=0}^i\sum _{k=0}^{(f-t)m_2-1}H(i,j,k)2\sqrt{B_1B_2}\\&\quad \qquad \times \frac{\sqrt{\pi }(4\sqrt{B_1B_2})^{p_1-1}}{z_1^{w+p_1}}\frac{\varGamma (w+p_1)\varGamma (w-p_1+2)}{\varGamma (w+3/2)}\\&\quad \qquad \times {_2}F_1(w+p_1,p_1-1/2;w+3/2;z_2)\\&\Theta _4=\sum _{i=0}^{tm_1-1}\sum _{j=0}^i\sum _{k=0}^{(f-t)m_2-1}H(i,j,k)(k-j+1)\frac{\sqrt{\pi }(4\sqrt{B_1B_2})^{p_1}}{z_1^{w+p_1}}\frac{\varGamma (w+p_1)\varGamma (w-p_1)}{\varGamma (w+1/2)}\\&\quad \qquad \times {_2}F_1(w+p_1,p_1+1/2;w+1/2;z_2)\\&\Theta _5=\sum _{i=0}^{tm_1-1}\sum _{j=0}^i\sum _{k=0}^{(f-t)m_2-1}\sum _{l=0}^{tm_0-1}\frac{B_0^l}{l!}H(i,j,k)(w+l)\\&\quad \qquad \times \frac{\sqrt{\pi }(4\sqrt{B_1B_2})^{p_1}}{z_3^{w+l+p_1}}\frac{\varGamma (w+l+p_1)\varGamma (w+l-p_1)}{\varGamma (w+l+1/2)}\\&\quad \qquad \times {_2}F_1(w+l+p_1,p_1+1/2;w+l+1/2;z_4)\\&\Theta _6=\sum _{i=0}^{tm_1-1}\sum _{j=0}^i\sum _{k=0}^{(f-t)m_2-1}\sum _{l=0}^{tm_0-1}\frac{B_0^l}{l!}H(i,j,k)(B_0+B_1+B_2)\frac{\sqrt{\pi }(4\sqrt{B_1B_2})^{p_1}}{z_3^{w+l+p_1+1}}\\&\quad \qquad \times \frac{\varGamma (w+l+p_1+1)\varGamma (w+l-p_1+1)}{\varGamma (w+l+3/2)}{_2}\\&\quad \qquad \times \,\,F_1(w+l+p_1+1,p_1+1/2;w+l+3/2;z_4)\\&\Theta _7=\sum _{i=0}^{tm_1-1}\sum _{j=0}^i\sum _{k=0}^{(f-t)m_2-1}\sum _{l=0}^{tm_0-1}\frac{B_0^l}{l!}H(i,j,k)2\sqrt{B_1B_2}\frac{\sqrt{\pi }(4\sqrt{B_1B_2})^{p_1-1}}{z_3^{w+l+p_1}}\\&\quad \qquad \times \frac{\varGamma (w+l+p_1)\varGamma (w+l-p_1+2)}{\varGamma (w+l+3/2)}{_2}\\&\quad \qquad \times \,\,F_1(w+l+p_1+1,p_1-1/2;w+l+3/2;z_4)\\&\Theta _8=\sum _{i=0}^{tm_1-1}\sum _{j=0}^i\sum _{k=0}^{(f-t)m_2-1}\sum _{l=0}^{tm_0-1}\frac{B_0^l}{l!}H(i,j,k)(k-j+1)\frac{\sqrt{\pi }(4\sqrt{B_1B_2})^{p_1}}{z_3^{w+l+p_1}}\\&\quad \qquad \times \frac{\varGamma (w+l+p_1)\varGamma (w+l-p_1)}{\varGamma (w+l+1/2)}{_2}F_1(w+l+p_1,p_1+1/2;w+l+1/2;z_4) \end{aligned}$$

where \(p_1=k-j+1\);

$$\begin{aligned} z_1&= B_1+B_2+2\sqrt{B_1B_2};z_2=B_0+B_1+B_2+2\sqrt{B_1B_2};\\ z_3&= \frac{B_1+B_2-2\sqrt{B_1B_2}}{B_1+B_2+2\sqrt{B_1B_2}}; z_4=\frac{B_0+B_1+B_2-2\sqrt{B_1B_2}}{B_0+B_1+B_2+2\sqrt{B_1B_2}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wu, K., Zhou, Y. et al. Closed-Form Error Analysis of AF-CARQ with CSI-Assisted Relay over Nakagami-\(m\) Fading Channels. Wireless Pers Commun 78, 629–647 (2014). https://doi.org/10.1007/s11277-014-1775-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1775-2

Keywords

Navigation