Skip to main content
Log in

Robust MMSE Design With Asynchronous Interference Mitigation in Cooperative Base Station Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper investigates minimum mean square error (MMSE) with asynchronous interference mitigation in cooperative base station systems. We consider the asynchronous transmission because of the different propagation times between the base station (BS) and mobile stations (BSs). Meanwhile, the channel quantization errors duo to channel quantization is taken into account in our analysis. The proposed scheme is robust to asynchronous interference and channel quantization errors in BSs cooperation systems. Simulations results show that proposed MMSE scheme achieve an improved performance compared with the conventional MMSE in BSs cooperative systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Foschini, G. J., & Gans, M. J. (1998). On the limits of wireless communications in a fading environment when using multiple antennas. Wireless personal communications, 6, 311–335.

    Google Scholar 

  2. Dai, H., Molisch, A. F., & Poor, H. V. (Mar. 2004). Downlink capacity of interference-limited MIMO systems with joint detection. Wireless Communications, IEEE Transactions, 3, 442–453.

    Google Scholar 

  3. Catreux, S., Driessen, P., & Greenstein, L. (Aug. 2001). Attainable throughput of an interference-limited multiple-inputmultiple-output (MIMO) cellular system. IEEE Transactions Communications, 49, 1307–1311.

    Google Scholar 

  4. Ng, B. L., Evans, J. S., Hanly, S. V., & Aktas, D. (Dec. 2008). Distributed downlink beamforming with cooperative base stations. IEEE Transactions on Information Theory, 54(12), 5491–5499.

    Google Scholar 

  5. Costa, M. (May 1983). Writing on dirty paper. Information Theory, IEEE Transactions, 29, 439–441.

  6. Jialing, Li., I-Tai, Lu., Lu, E. (2009). Optimum MMSE transceiver designs for the downlink of multicell MIMO systems Military Communications Conference, IEEE, (pp. 1–7).

  7. Spencer, Q. H., Swindlehurst, A. L., & Haardt, M. (Feb. 2004). Zero-forcing methods for downlink spatial multiplexing in multi-user MIMO channels. Signal Processing, IEEE Transactions, 52, 461–471.

    Google Scholar 

  8. Pan, Z., Wong, K. K., & Ng, T. S. (Nov. 2004). Generalized multiuser orthogonal space-division multiplexing. Wireless Communications, IEEE Transactions, 3(6), 1969–1973.

    Google Scholar 

  9. Jindal, N. (2006). MIMO Broadcast channels with finite rate feedback. Theory : IEEE Transaction (on Inform).

  10. Ravindran, N., & Jindal, N. (2008). Limited feedback-based block diago- nalization for the MIMO broadcast channel, Selected Areas in Communications, IEEE Journal, 26(8) .

  11. Shi, J., Zhang, T., & Zeng, Z. (2011). Rate loss caused by limited feedback and channel delay in coordinated multi-point system, IEEE VTC Spring.

  12. Bhagavatula, R., & Heath, R.W. (2011 ). Adaptive bit partitioning for multi cell intercell interference nulling with delayed limited feedback signal processing, IEEE Transactions on Issue Date: 59(8) (pp. 3824–3836)

    Google Scholar 

  13. Zhang,H., Mehta, N. B., & Molisch, A. F. (2008). Asynchronous interference mitigation in cooperative base station systems, Wireless Communications, IEEE, Transactions (pp. 155–165).

Download references

Acknowledgments

The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. This work was supported in part by National Science Fund under Grant No. 6087215; Yunnan Research Program of Application Foundation under Grant No. 2009ZC016X, 2011FB035, KKSY20120302; Yunnan Research Program of Science and Technology under Grant No. 2009CA027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingmin Tang.

Appendix

Appendix

We can easily get that \({\mathbb {E}}\left\{ {\left\| {s_k } \right\| _F^2 } \right\} =N_t \) and \(\beta ^{-2}\mathrm{E}\left\{ {\left\| {n_k } \right\| _F^2 } \right\} =\beta ^{-2}N_t \). For the third term in (6), we substitute the channel quantization model (3) into (6):

$$\begin{aligned}&\beta ^{-2}{\mathbb {E}}\left\{ {\left\| {{\sum \limits _{b=1}^B} {\mathbf{H}_k^{( b)} } {\hat{\mathbf{T}}}_k^{( b )} s_k } \right\| _F^2 } \right\} =\beta ^{-2}{\mathbb {E}}\left\{ tr\left( {{\sum \limits _{b1=1}^B}}{{\sum \limits _{b2=1}^B} {\mathbf{H}_k^{( {b1} )} } } {\hat{\mathbf{T}}}_k^{( {b1} )} s_k s_{_k }^H {\hat{\mathbf{T}}}_k^{( {b2})H} \mathbf{H}_k^{( {b2} )H} \right) \right\} \nonumber \\&=\beta ^{-2}{\mathbb {E}}\left\{ {tr\left( \begin{array}{l} {\sum \limits _{b1=1}^B}{{\sum \limits _{b2=1}^B} {\left( {{\hat{\mathbf{H}}}_k^{( {b1} )} \mathbf{A}_k^{( {b1} )} +\mathrm{B}_k^{( {b1})} \mathbf{S}_k^{( {b1} )} } \right) } } {\hat{\mathbf{T}}}_k^{( {b1} )} s_k \\ *s_{k}^H {\hat{\mathbf{T}}}_k^{( {b2} )} \left( {{\hat{\mathbf{H}}}_k^{( {b2} )} \mathbf{A}_k^{( {b2} )} +\mathrm{B}_k^{( {b2} )} \mathbf{S}_k^{( {b2} )} } \right) ^{H} \\ \end{array} \right) } \right\} \nonumber \\&{\mathop =^{(a)}} \beta ^{-2}{\mathbb {E}}\left\{ \,tr\left( {{\sum \limits _{b1=1}^B}} {{\sum \limits _{b2=1}^B}} \left( {{\hat{\mathbf{H}}}_k^{( {b1} )} \mathbf{A}_k^{( {b1} )} {\hat{\mathbf{T}}}_k^{( {b1})} s_k s_{_k }^H {\hat{\mathbf{T}}}_k^{( {b2})H} \mathbf{A}_k^{( {b2} )H} {\hat{\mathbf{H}}}_k^{( {b2} )H} } \right. \right. \right. \nonumber \\&\left. \left. \left. \quad \quad +\mathrm{B}_k^{( {b1} )} \mathbf{S}_k^{( {b1} )} {\hat{\mathbf{T}}}_k^{( {b1})} s_k s_{_k }^H {\hat{\mathbf{T}}}_k^{( {b2} )H} \mathbf{S}_k^{( {b2} )H} \mathrm{B}_k^{( {b2} )H} \right) \right) \right\} \end{aligned}$$
(25)

(a) follows that \(\mathbf{S}\) is independent of \(\mathbf{A}\) and \(\mathbf{B}\), and \({\mathbb {E}}[ \mathbf{S} ]=0\) There are two cases in (25), so it can be further calculated as:

$$\begin{aligned}&\beta ^{-2}{\mathbb {E}}\left\{ tr \left( \begin{array}{l} {\sum \limits _{b1=1}^B} {{\sum \limits _{b2=1}^B}}{\left( {{\hat{\mathbf{H}}}_k^{( {b1})} \mathbf{A}_k^{( {b1} )} +\mathrm{B}_k^{( {b1})} \mathbf{S}_k^{( {b1} )} } \right) } {\hat{\mathbf{T}}}_k^{( {b1} )} s_k \\ *s_{k }^H {\hat{\mathbf{T}}}_k^{( {b2} )} \left( {{\hat{\mathbf{H}}}_k^{( {b2} )} \mathbf{A}_k^{( {b2})} +\mathrm{B}_k^{( {b2})} \mathbf{S}_k^{( {b2})} } \right) ^{H} \end{array} \right) \right\} \nonumber \\&\quad =\beta ^{-2}{\mathbb {E}}\left\{ {\mathop {tr}\limits _{b1=b2}} \left( {\sum \limits _{b1=b2=1}^B} {\begin{array}{l} \left( {{ \hat{\mathbf{H}}}_k^{( b )} \mathbf{A}_k^{( b)} +\mathrm{B}_k^{( b )} \mathbf{S}_k^{( b )} } \right) {\hat{\mathbf{T}}}_k^{( b)} s_k \\ *s_{_k }^H {\hat{\mathbf{T}}}_k^{( b)} \left( {{ \hat{\mathbf{H}}}_k^{( b )} \mathbf{A}_k^{( b )} +\mathrm{B}_k^{( b )} \mathbf{S}_k^{( b )} } \right) ^{H}\\ \end{array}} \right) \right\} \nonumber \\&\qquad +\beta ^{-2}{\mathbb {E}}\left\{ {\mathop {tr}\limits _{b1\ne b2}} \left( {\begin{array}{l} {\sum \limits _{b1=1}^B} {{\sum \limits _{b2=1}^B}{\left( {{ \hat{\mathbf{H}}}_k^{( {b1} )} \mathbf{A}_k^{( {b1} )} +\mathrm{B}_k^{( {b1} )} \mathbf{S}_k^{( {b1} )} } \right) } } {\hat{\mathbf{T}}}_k^{( {b1} )} s_k \\ *s_{_k }^H {\hat{\mathbf{T}}}_k^{( {b2} )} \left( {{\hat{\mathbf{H}}}_k^{( {b2} )} \mathbf{A}_k^{( {b2} )} +\mathrm{B}_k^{( {b2} )} \mathbf{S}_k^{( {b2} )} } \right) ^{H} \\ \end{array}} \right) \right\} \nonumber \\&\quad =\underbrace{\beta ^{-2}{\mathbb {E}}\left\{ {\mathop {tr}\limits _{b1=b2}} \left( {{\sum \limits _{b=1}^B} {\left( {\begin{array}{l} {\hat{\mathbf{H}}}_k^{( b )} \mathbf{A}_k^{( b )} {\hat{\mathbf{T}}}_k^{( b)} s_k s_{_k }^H {\hat{\mathbf{T}}}_k^{( b )H} \mathbf{A}_k^{( b )H} {\hat{\mathbf{H}}}_k^{( b )H} \\ +\mathrm{B}_k^{( b )} \mathbf{S}_k^{( b)} {\hat{\mathbf{T}}}_k^{( b )} s_{k} s_{k}^H {\hat{\mathbf{T}}}_k^{( b)H} \mathbf{S}_k^{( b)H} \mathrm{B}_k^{( b )H} \\ \end{array}} \right) } } \right) \right\} }_{<7>} \nonumber \\&\qquad +\beta ^{-2}{\mathbb {E}}\left\{ {\mathop {tr}\limits _{b1\ne b2}} \left( {{\sum \limits _{b1=1}^B} {\sum \limits _{b2=1}^B} {\left( {{\hat{\mathbf{H}}}_k^{( {b1})} \mathbf{A}_k^{( {b1} )} {\hat{\mathbf{T}}}_k^{( {b1} )} {\hat{\mathbf{T}}}_k^{( {b2} )H} \mathbf{A}_k^{( {b2} )H} {\hat{\mathbf{H}}}_k^{( {b2} )H} } \right) } } \right) \right\} \end{aligned}$$
(26)

The first term in (26), using \(tr(A+B)=tr(A)+tr(B),<7>\) can be rewritten as:

$$\begin{aligned}&<7> \nonumber \\&=\beta ^{-2}{\mathbb {E}}\left\{ \underbrace{tr}_{b1=b2}\left( {{\sum \limits _{b1=b2=1}^B} {\hat{\mathbf{H}}}_k^{( b )} \mathbf{A}_k^{( b)} {\hat{\mathbf{T}}}_k^{( b)} s_k s_{_k }^H {\hat{\mathbf{T}}}_k^{( b)H} \mathbf{A}_k^{( b )H} {\hat{\mathbf{H}}}_k^{( b )H} } \right) \right\} \nonumber \\&+\beta ^{-2}{\mathbb {E}}\left\{ \underbrace{tr}_{b1=b2}\left( {{\sum \limits _{b1=b2=1}^B} {\mathrm{B}_k^{( b )} \mathbf{S}_k^{( b )} {\hat{\mathbf{T}}}_k^{( b)} s_k s_{_k }^H {\hat{\mathbf{T}}}_k^{( b )H} \mathbf{S}_k^{( b )H} \mathrm{B}_k^{( b )H} } } \right) \right\} \nonumber \\&{\mathop =^{(b)}} \beta ^{-2}{\mathbb {E}}\left\{ tr\left( {{\sum \limits _{b1=b2=1}^B} {\mathbf{R}_k (\mathbf{I}_{N_r } -\mathbf{Z}_k^H \mathbf{Z}_k )^{1/2}\mathbf{R}_k^H {\hat{\mathbf{H}}}_k^{( b )} {\hat{\mathbf{T}}}_k^{( b )} {\hat{\mathbf{T}}}_k^{( b )H} {\hat{\mathbf{H}}}_k^{( b )H} } } \right) \right\} \nonumber \\&+\beta ^{-2}{\mathbb {E}}\left\{ \underbrace{tr}_{b1=b2}\left( {{\sum \limits _{b1=b2=1}^B} {\mathrm{B}_k^{( b )} \mathbf{S}_k^{( b )} {\hat{\mathbf{T}}}_k^{( b )} s_k s_{_k }^H {\hat{\mathbf{T}}}_k^{( b )H} \mathbf{S}_k^{( b )H} \mathrm{B}_k^{( b )H} } } \right) \right\} \end{aligned}$$
(27)

(b) follows that \(\mathbf{A}_k =(\mathbf{I}_{N_r } -\mathbf{Z}_k^H \mathbf{Z}_k )^{1/2}\mathbf{R}_k \), it further can be expressed as:

$$\begin{aligned}&<7> \nonumber \\&=\beta ^{-2}(Nt-\frac{N_t D}{N_r })tr\left( {{\sum \limits _{b1=b2}^B}} {\hat{\mathbf{H}}}_k^{( b)} {\hat{\mathbf{T}}}_k^{( b )} {\hat{\mathbf{T}}}_k^{( b)H} {\hat{\mathbf{H}}}_k^{( b )H} \right) \nonumber \\&+\beta ^{-2}{\mathbb {E}}\left\{ \underbrace{tr}_{b1=b2}\left( {{\sum \limits _{b1=b2=1}^B} {\mathrm{B}_k^{( b )} \mathbf{S}_k^{( b )} {\hat{\mathbf{T}}}_k^{( b)} s_k s_{_k }^H {\hat{\mathbf{T}}}_k^{( b)H} \mathbf{S}_k^{( b )H} \mathrm{B}_k^{( b)H} } } \right) \right\} \nonumber \\&=\beta ^{-2}(Nt-\frac{N_t D}{N_r })tr\left( {\hat{\mathbf{H}}}_k {\hat{\mathbf{T}}}_k {{\hat{\mathbf{T}}}_k^H {\hat{\mathbf{H}}}_k^H } \right) +\beta ^{-2}\frac{N_t D}{N_t -N_r }tr\left( {\hat{\mathbf{T}}}_k^H {\hat{\mathbf{T}}}_k \right) \nonumber \\&-\beta ^{-2}\frac{N_t N_r D}{N_r (N_t -N_r )}tr\left( {\sum \limits _{b1=b2=b=1}^B} {\hat{\mathbf{T}}}_k^{( b )H} { \hat{\mathbf{H}}}_k^{(b)} {\hat{\mathbf{H}}}_k^{(b)H} {\hat{\mathbf{T}}}_k^{\left( b \right) } \right) \end{aligned}$$
(28)

\(<7>\) follows \({\mathbb {E}}\left\{ {\mathbf{RR}^{H}} \right\} =N_t \mathbf{I}_{N_r } \) and \({\mathbb {E}}\left\{ {\mathbf{Z}_k \mathbf{Z}_{_k }^H } \right\} =\frac{D}{N_r }\mathbf{I}_{N_r } \).

The fourth term in (6) can be calculated by:

$$\begin{aligned}&\beta ^{-2}{\mathbb {E}}\left\{ {\left\| {\mathbf{J}_k } \right\| _F^2 } \right\} \nonumber \\&=\beta ^{-2}{\mathbb {E}}tr\left( \mathop {\sum \limits _{j=1}}\limits _{j \ne k}^{k} {\sum \limits _{b1=1}^B} {\sum \limits _{b2=1}^B} {\beta _{jk}^{(b1,b2)} \mathbf{H}_k^{( {b1} )} {\hat{\mathbf{T}}}_j^{( {b1} )} {\hat{\mathbf{T}}}_j^{( {b2} )H} \mathbf{H}_k^{( {b2} )H} } \right) \nonumber \\&=\beta ^{-2}{\mathbb {E}}tr\left( \mathop {\sum \limits _{j=1}}\limits _{j \ne k}^{k} {\sum \limits _{b1=1}^B}{\sum \limits _{b2=1}^B} {\begin{array}{l} \beta _{jk}^{(b1,b2)} \left( {{\hat{\mathbf{H}}}_k^{( {b1} )} \mathbf{A}_k^{( {b1} )} +\mathrm{B}_k^{( {b1} )} \mathbf{S}_k^{( {b1} )} } \right) {\hat{\mathbf{T}}}_j^{( {b1})}\\ *{\hat{\mathbf{T}}}_j^{( {b2} )H} \left( {{\hat{\mathbf{H}}}_k^{( {b2} )} \mathbf{A}_k^{( {b2} )} +\mathrm{B}_k^{( {b2} )} \mathbf{S}_k^{( {b2} )} } \right) ^{H} \\ \end{array}} \right) \nonumber \\&=\beta ^{-2}{\mathbb {E}}tr\left( \mathop {\sum \limits _{j=1}}\limits _{j \ne k}^{k} {\sum \limits _{b1=1}^B}{\sum \limits _{b2=1}^B} {\beta _{jk}^{(b1,b2)} \left( {\hat{\mathbf{H}}}_k^{( {b1} )} \mathbf{A}_k^{( {b1} )} {\hat{\mathbf{T}}}_j^{( {b1} )} {\hat{\mathbf{T}}}_j^{( {b2} )H} \mathbf{A}_k^{( {b2} )H} {\hat{\mathbf{H}}}_k^{( {b2} )H} \right) } \right) \end{aligned}$$
(29)

The fifth and sixth in (6) can be further calculated by:

$$\begin{aligned}&-\beta ^{-1}{\mathbb {E}}\left\{ tr({\sum \limits _{b=1}^B} {\mathbf{H}_k^{( b)} } {\hat{\mathbf{T}}}_k^{( b)} ) \right\} -\beta ^{-1}{\mathbb {E}}\left\{ tr\left( {\sum \limits _{b=1}^B} {\hat{\mathbf{T}}}_k^{(b)H} \mathbf{H}_k^{(b)H} \right) \right\} \nonumber \\&{\mathop =^{(c)}} -\beta ^{-1}\left( {\begin{array}{l} { \mathbb {E}}\left\{ tr\left( {\sum \limits _{b=1}^B} {\left( {{\hat{\mathbf{H}}}_k^{( b )} \mathbf{A}_k^{( b )} +\mathrm{B}_k^{( b )} \mathbf{S}_k^{( b )} } \right) } {\hat{\mathbf{T}}}_k^{( b )} \right) \right\} \\ +{\mathbb {E}}tr\left( {\sum \limits _{b=1}^B} {\hat{\mathbf{T}}}_k^{(b)H} \left( {{\hat{\mathbf{H}}}_k^{( b)} \mathbf{A}_k^{( b )} +\mathrm{B}_k^{( b )} \mathbf{S}_k^{( b )} } \right) ^{H} \right) \end{array}} \right) \nonumber \\&{\mathop =^{(d)}} -\beta ^{-1}\left( {\mathbb {E}} \left\{ tr\left( {\sum \limits _{b=1}^B} {\left( {{\hat{\mathbf{H}}}_k^{( b)} \mathbf{A}_k^{( b )} {\hat{\mathbf{T}}}_k^{( b )} } \right) } \right) \right\} +{\mathbb {E}}tr\left( {\sum \limits _{b=1}^B} {\hat{\mathbf{T}}}_k^{(b)H} \mathbf{A}_k^{( b )H} { \hat{\mathbf{H}}}_k^{( b )H} \right) \right) \nonumber \\&{\mathop =^{(e)}} -2\psi \beta ^{-1}\hbox {Re}\left[ tr\left( {\sum \limits _{b=1}^B} {\left( {{\hat{\mathbf{H}}}_k^{( b )} {\hat{\mathbf{T}}}_k^{( b )} } \right) } \right) \right] \end{aligned}$$
(30)

(c) follows that \(\mathbf{H}_{k}={\hat{\mathbf{H}}}_k\mathbf{A}_k +\mathbf{S}_k \mathbf{B}_k \) and (d) comes from \(\mathbf{S}\) is independent of \(\mathbf{A}\) and \(\mathbf{B}\), and \({\mathbb {E}}\left[ \mathbf{S} \right] =0\). (e) holds because \({\mathbb {E}}\left( \mathbf{A} \right) ={\mathbb {E}}\left( {\left( {\mathbf{I}_{N_r } -\mathbf{Z}_k^H \mathbf{Z}_k } \right) ^{1/2}\mathbf{R}_k } \right) =\psi \mathbf{I}_{N_r } \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Zhao, K., Ni, C. et al. Robust MMSE Design With Asynchronous Interference Mitigation in Cooperative Base Station Systems. Wireless Pers Commun 78, 889–903 (2014). https://doi.org/10.1007/s11277-014-1790-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1790-3

Keywords

Navigation