Skip to main content
Log in

Robust Probabilistic Distributed Power Control Algorithm for Underlay Cognitive Radio Networks under Channel Uncertainties

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Due to limited cooperation among users and erratic nature of wireless channel, it is difficult for secondary users (SUs) to obtain exact values of system parameters, which may lead to severe interference to primary users (PUs) and cause communication interruption for SUs. In this paper, we study robust power control problem for spectrum underlay cognitive radio networks with multiple SUs and PUs under channel uncertainties. Precisely, our objective is to minimize total transmit power of SUs under the constraints that the satisfaction probabilities of both interference temperature of PUs and signal-to-interference-plus-noise ratio of SUs exceed some thresholds. With knowledge of statistical distribution of fading channel, probabilistic constraints are transformed into closed forms. Under a weighted interference temperature constraint, a globally distributed power control iterative algorithm with forgetting factor to increase convergence speed is obtained by dual decomposition methods. Numerical results show that our proposed algorithm outperforms worst case method and non-robust method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  MATH  Google Scholar 

  2. Srinivasa, S., & Jafar, S. A. (2007). Cognitive radios for dynamic spectrum access-the throughput potential of cognitive radio: A theoretical perspective. IEEE Communications Magazine, 45(5), 73–79.

    Article  Google Scholar 

  3. Li, D. (2012). Joint power and rate control combined with adaptive modulation in cognitive radio networks. Wireless Personal Communications, 63(3), 549–559.

    Article  Google Scholar 

  4. Karaca, H. M., Kurt, T., Dicle, S. Z., & Anarim, E. (2013). Auction-based throughput maximization in cognitive radio networks under interference consrtaint. Wireless Personal Communications, 72(2), 1259–1275.

    Article  Google Scholar 

  5. Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton: Princeton University Press.

    MATH  Google Scholar 

  6. Fukushima, M. (2007). Stochastic and robust approaches to optimization problems under uncertainty. In Second international conference on informatics research for development of knowledge society infrastructure (ICKS 2007).

  7. Setoodeh, P., & Haykin, S. (2009). Robust transmit power control for cognitive radio. Proceedings of the IEEE, 97(5), 915–939.

    Article  Google Scholar 

  8. Wang, J. H., Scutari, G., & Palomar, D. P. (2011). Robust MIMO cognitive radio via game theory. IEEE Transactions on Signal Processing, 59(3), 1183–1201.

    Article  MathSciNet  Google Scholar 

  9. Parsaeefard, S., & Sharafat, A. R. (2012). Robust worst-case interference control in underlay cognitive radio networks. IEEE Transactions on Vehicular Technology, 61(8), 3731–3745.

    Article  Google Scholar 

  10. Parsaeefard, S., & Sharafat, A. R. (2013). Robust distributed power control in cognitive radio networks. IEEE Transactions on Mobile Computing, 12(4), 609–620.

    Article  Google Scholar 

  11. Tan, C. W., Palomar, D. P., & Chiang, M. (2009). Energy-robustness tradeoff in cellular networks power control. IEEE/ACM Transactions on Networks, 17(3), 912–925.

    Article  Google Scholar 

  12. Sun, S. Q., Ni, W. M., & Zhu, Y. (2011). Robust power control in cognitive radio networks: A distributed way. In IEEE international conference on communications (ICC 2011).

  13. Zhou, X., Wu, B., Ho, P.-H., & Ling, X. (2011). An efficient power allocation algorithm for OFDM based underlay cognitive radio networks. In IEEE Global Telecommunications Conference (GLOBECOM 2011).

  14. Kang, X., Zhang, R., Liang, Y.-C., & Garg, H. K. (2011). Optimal power allocation strategies for fading cognitive radio channels with primary user outage constraint. IEEE Journal on Selected Areas in Communications, 29(2), 374–383.

    Article  Google Scholar 

  15. Son, K., Jung, B. C., Chong, S., & Sung, D. K. (2013). Power allocation policies with full and partial inter-system channel state information for cognitive radio networks. Wireless Networks, 19(1), 99–113.

    Article  Google Scholar 

  16. Soltani, N. Y., Kim, S.-J., & Giannakis, G. B. (2013). Chance-constrained optimization of OFDMA cognitive radio uplinks. IEEE Transactions on Wireless Communications, 12(3), 1098–1107.

    Article  Google Scholar 

  17. Zhou, P., Chang, Y. S., & Copeland, J. A. (2011). Asynchronous power control game with channel outage constraints in cognitive radio networks. In IEEE international conference on communications (ICC 2011).

  18. Dall’Anese, E., Kim, S.-J., Giannakis, G. B., & Pupolin, S. (2011). Power control for cognitive radio networks under channel uncertainty. IEEE Transactions on Wireless Communications, 10(10), 3541–3551.

    Article  Google Scholar 

  19. Ponukumati, D., Gao, F. F., Bode, M., Li, J. C. F., & Lei, M. (2012). Robust coordinated downlink beamforming for multicell-cognitive radio networks with probabilistic constraints. In IEEE international conference on communications (ICC 2012).

  20. Ma, S. A., & Sun, D. C. (2013). Chance constrained robust beamforming in cognitive radio networks. IEEE Communications Letters, 17(1), 67–70.

    Article  Google Scholar 

  21. Huang, S. H., Liu, X., & Ding, Z. (2011). Decentralized cognitive radio control based on inference from primary link control information. IEEE Journal on Selected Areas in Communications, 29(2), 394–406.

    Article  Google Scholar 

  22. Sun, S. Q., Di, J. X., & Ni, W. M. (2010). Distributed power control based on convex optimization in cognitive radio networks. In International conference on wireless communications and signal processing (WCSP 2010).

  23. Durowoju, Q., Arshad, K., & Moessner, K. (2012). Distributed power control algorithm for cognitive radios with primary protection via spectrum sensing under user mobility. Ad Hoc Networks, 10(5), 740–751.

    Article  Google Scholar 

  24. Yarkan, S., & Arslan, H. (2008). Exploiting location awareness toward improved wireless system design in cognitive radio. IEEE Communications Magazine, 46(1), 128–136.

    Article  Google Scholar 

  25. Kang, X., Liang, Y.-C., Nallanathan, A., Garg, H. K., & Zhang, R. (2009). Optimal power allocation for fading channels in cognitive radio networks: Ergodic capacity and outage capacity. IEEE Transactions on Wireless Communications, 8(2), 940–950.

    Article  Google Scholar 

  26. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  27. Bertsekas, D. P. (2009). Convex optimization theory. Belmont, MA: Athena Scientific.

    MATH  Google Scholar 

  28. Scutari, G., Palomar, D. P., & Barbarossa, S. (2008). Optimal linear precoding strategies for wideband non-cooperative systems based on game theory—Part II: Algorithms. IEEE Transactions on Signal Processing, 56(3), 1250–1267.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 61171079. We thank the reviewers for their detailed, constructive and valuable reviews and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Xu.

Appendix

Appendix

1.1 Proof of Equation (9)

For simplicity, we define two independent random variables \(A=\frac{p_i g_{ii} }{n_i }\) and \(B_j =\frac{p_j g_{ji} }{n_i }\). According to probability distribution, \(A\) and \(B_j \) follow exponential distribution with mean \(\updelta _i =\frac{p_i \bar{{g}}_{ii} }{n_i }\) and \(\updelta _j =\frac{p_j \bar{{g}}_{ji} }{n_i }\) respectively. The probabilistic SINR constraint is expressed as

$$\begin{aligned} \Pr \left( {\frac{p_i g_{ii} }{{\sum }_{j=1,j\ne i}^M {p_j g_{ji} }+n_i }\ge {\upgamma }_i^d } \right)&= \Pr \left( {\frac{A}{1+\sum _{j=1,j\ne i}^M {B_j } }\ge {\upgamma } _i^d } \right) \nonumber \\&= \Pr \left( {A\ge {\upgamma } _i^d +{\upgamma } _i^d \sum \nolimits _{j=1,j\ne i}^M {B_j } } \right) \nonumber \\&= \int \limits _{\,0}^{\,+\infty } {\cdots \int \limits _{\,0}^{\,+\infty } {\left( {\int \limits _{{\upgamma } _i^d +{\upgamma } _i^d {\sum }_{j=1,j\ne i}^M {b_j } }^{\,+\infty } {\frac{1}{\updelta _i }\exp \left( {-\frac{a}{\updelta _i }} \right) da} } \right) } }\nonumber \\&\quad \times \left\{ {\prod _{j=1,j\ne i}^M {\frac{1}{\updelta _j }\exp \left( {-\frac{b_j }{\updelta _j }} \right) } } \right\} db_1 \cdots db_M\nonumber \\&= \int \limits _{\,0}^{\,+\infty } {\cdots \int \limits _{\,0}^{\,+\infty } {\exp \left( {-\frac{{\upgamma } _i^d \left( {1+{\sum }_{j=1,j\ne i}^M {b_j } } \right) }{\updelta _i }} \right) } }\nonumber \\&\quad \times \left\{ {\prod _{j=1,j\ne i}^M {\frac{1}{\updelta _j }\exp \left( {-\frac{b_j }{\updelta _j }} \right) } } \right\} db_1 \cdots db_M\nonumber \\&= \exp \left( {-\frac{{\upgamma } _i^d }{\updelta _i }} \right) \int \limits _{\,0}^{\,+\infty } \cdots \int \limits _{\,0}^{\,+\infty } \left( \prod _{j=1,j\ne i}^M \frac{1}{\updelta _j }\right. \nonumber \\&\quad \times \left. \exp \left( {-\left( {\frac{{\upgamma } _i^d {\sum }_{j=1,j\ne i}^M {b_j } }{\updelta _i }+\frac{b_j }{\updelta _j }} \right) } \right) \right) db_1 \cdots db_M\nonumber \\&= \exp \left( {\!-\frac{{\upgamma } _i^d }{\updelta _i }} \right) \prod _{j\!=\!1,j\ne i}^M {\int \limits _{\,0}^{\!+\!\infty } {\frac{1}{\updelta _j }\exp \left( {\!-\!\left( {\frac{1}{\updelta _j }\!+\!\frac{{\upgamma } _i^d }{\updelta _i }} \right) b_j } \right) } } db_j\nonumber \\&= \exp \left( {-\frac{{\upgamma } _i^d }{\updelta _i }} \right) \prod _{j=1,j\ne i}^M {\frac{1}{\updelta _j }\left( {\frac{1}{\updelta _j }+\frac{{\upgamma } _i^d }{\updelta _i }} \right) ^{-1}}\nonumber \\&= \exp \left( {-\frac{{\upgamma } _i^d }{\updelta _i }} \right) \prod _{j=1,j\ne i}^M {\left( {1+\frac{\updelta _j {\upgamma } _i^d }{\updelta _i }} \right) ^{-1}} \end{aligned}$$
(26)

Substituting the variables \(\updelta _i =\frac{p_i \bar{{g}}_{ii} }{n_i }\) and \(\updelta _j =\frac{p_j \bar{{g}}_{ji} }{n_i }\) into (26), we get

$$\begin{aligned} \Pr \left\{ {\frac{p_i g_{ii} }{{\sum }_{j=1,j\ne i}^M {p_j g_{ji} } +n_i }\ge {\upgamma }_i^d } \right\} =\exp \left( {-\frac{{\upgamma }_i^d n_i }{p_i \bar{{g}}_{ii} }} \right) \prod _{j=1,j\ne i}^M {\left( {1+\frac{p_j \bar{{g}}_{ji} }{p_i \bar{{g}}_{ii} }{\upgamma }_i^d } \right) } ^{-1} \end{aligned}$$
(27)

The proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhao, X. Robust Probabilistic Distributed Power Control Algorithm for Underlay Cognitive Radio Networks under Channel Uncertainties. Wireless Pers Commun 78, 1297–1312 (2014). https://doi.org/10.1007/s11277-014-1818-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1818-8

Keywords

Navigation