Skip to main content
Log in

An Overview of WLAN Performance, Some Important Case-Scenarios and Their Associated Models

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The study of the 802.11 standard has been very intense for more than a decade now. Several works have striven at understanding its performance, even in the simplest topology of a wireless local area network (WLAN) with a single access point. The present survey is an effort to classify and present the enormous literature on the subject into several important case-scenarios, and summarizes the current understanding of WLAN performance. The resulting performance and associated models are discussed (and sometimes extended) and simulation results are used to illustrate them. We also highlight interesting open research problems that we believe the community should address.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. More precisely, for all practical purposes DIFS is replaced by the Arbitration Interframe Space (AIFS), the value of which depends on the AC as follows: \(\text {AIFS[AC]}=\text {AIFSN[AC]}\times \text {aSlotTime}+\text {aSIFSTime}\), where AIFSN[AC] is an integer. Similarly, EIFS is now “replaced” by \(\text {EIFS}-\text {DIFS}+\text {AIFS[AC]}\).

  2. Please note that such situation is not considered in Bianchi’s original model. The interested reader is referred to [52] for details on how to include it in the model.

  3. More in particular, we have used the ThreeLogDistancePropagationLossModel model of ns-3, with parameters Distance0, Distance1, ReferenceLoss, Exponent0 and Exponent1 equal to 1, \(d\), 2, 4.9 and \(\alpha \) respectively (where \(d\) varied linearly from 50 to 100 and \(\alpha \) from 24 to 13).

References

  1. 802.11-2012—IEEE Standard for Information technology-Telecommunications and information exchange between systems Local and metropolitan area networks-Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (2012).

  2. Samsung, “30 cu. ft. Side by Side Refrigerator and 8” LCD digital display with apps (online). http://www.samsung.com/us/appliances/refrigerators/RSG309AARS/XAA.

  3. Huang, K., Malone, D., & Duffy, K. (2011). The 802.11g 11 Mb/s rate is more robust than 6 Mb/s. IEEE Transactions on Wireless Communications, 10(4), 1015–1020.

    Article  Google Scholar 

  4. IEEE Standard for Information technology- Local and metropolitan area networks- Specific requirements- Part 11: Wireless LAN Medium Access Control (MAC)and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput. IEEE Std 802.11n-2009 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std 802.11w-2009) (2009).

  5. Kleinrock, L., & Tobagi, F. (1975). Packet switching in radio channels: Part I-carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Transactions on Communications, 23(12), 1400–1416.

    Article  MATH  Google Scholar 

  6. “ns-3.” (online). http://www.nsnam.org/.

  7. IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements. IEEE Std 802.11e-2005 (Amendment to IEEE Std 802.11, 1999 Edition (Reaff 2003)) (2005).

  8. Baccelli, F., & Foss, S. (1995). On the saturation rule for the stability of queues. Journal of Applied Probability, 32(2), 494–507.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kumar, A., & Patil, D. (1997). Stability and throughput analysis of unslotted CDMA-ALOHA with finite number of users and code sharing. Telecommunication Systems, 8, 257–275.

    Article  Google Scholar 

  10. Crow, B., Widjaja, I., Kim, J., & Sakai, P. (1997). Investigation of the IEEE 802.11 medium access control (MAC) sublayer functions. In Proceedings of the sixteenth annual joint conference of the IEEE computer and communications societies (IEEE INFOCOM ’97) (Vol. 1, pp. 126– 133).

  11. Ho, T.-S., & Chen, K.-C. (1996). Performance analysis of IEEE 802.11 CSMA/CA medium access control protocol. In Seventh IEEE international symposium on personal, indoor and mobile radio communications, 1996 (PIMRC’96) (Vol. 2, pp. 407–411).

  12. Cali, F., Conti, M., & Gregori, E. (1998). IEEE 802.11 wireless LAN: Capacity analysis and protocol enhancement. In Proceedings of the IEEE seventeenth annual joint conference of the IEEE computer and communications societies (INFOCOM ’98) (Vol. 1, pp. 142–149).

  13. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  14. Kumar, A., Altman, E., Miorandi, D., & Goyal, M. (2007). New insights from a fixed-point analysis of single cell IEEE 802.11 WLANs. IEEE/ACM Transactions on Networking, 15(3), 588–601.

    Article  Google Scholar 

  15. Huang, K., Duffy, K., & Malone, D. (2010). On the validity of IEEE 802.11 MAC modeling hypotheses. IEEE/ACM Transactions on Networking, 18(6), 1935–1948.

    Article  Google Scholar 

  16. Sharma, G., Ganesh, A., & Key, P. (2009). Performance analysis of contention based medium access control protocols. IEEE Transactions on Information Theory, 55(4), 1665–1682.

    Article  MathSciNet  Google Scholar 

  17. Robert, P. (2003). Stochastic networks and queues, ser. stochastic modelling and applied probability series. Berlin: Springer.

    Google Scholar 

  18. Darling, R. W., & Norris, J. R. (2008). Differential equation approximations for Markov chains. Probability Surveys, 5, 37–79.

    Article  MathSciNet  MATH  Google Scholar 

  19. Benaim, M., & Boudec, J.-Y. L. (2008). A class of mean field interaction models for computer and communication systems. Performance Evaluation, 65(1112), 823–838.

    Article  Google Scholar 

  20. Cho, J.-W., Le Boudec, J.-Y., & Jiang, Y. (2010). On the validity of the fixed point equation and decoupling assumption for analyzing the 802.11 MAC protocol. SIGMETRICS Performance Evaluation Review, 38(2), 36–38.

    Article  Google Scholar 

  21. Bredel, M., & Fidler, M. (2009). Understanding fairness and its impact on quality of service in IEEE 802.11. In IEEE INFOCOM 2009 (pp. 1098–1106).

  22. Lan, T., Kao, D., Chiang, M., & Sabharwal, A. (2010). An axiomatic theory of fairness in network resource allocation. In 2010 Proceedings of the IEEE INFOCOM (pp. 1–9).

  23. Altman, E., Avrachenkov, K., & Ramanath, S. (2012). Multiscale fairness and its application to resource allocation in wireless networks. Computer Communications, 35(7), 820–828.

    Article  Google Scholar 

  24. Kamerman, A., & Monteban, L. (1997). WaveLAN-II: A high-performance wireless LAN for the unlicensed band. Bell Labs Technical Journal, 2(3), 118–133.

    Article  Google Scholar 

  25. Choi, S., Park, K., & Kim, C.-K. (2005). On the performance characteristics of WLANs: Revisited. In Proceedings of the 2005 ACM SIGMETRICS international conference on measurement and modeling of computer systems, ser. (SIGMETRICS ’05) (pp. 97–108).

  26. Vasan, A., & Shankar, A. U. (2002). An empirical characterization of instantaneous throughput in 802.11b WLANs. Tech. Rep. CS-TR-4389, UMIACS-TR-2002-69. (online). http://hdl.handle.net/1903/1216.

  27. Zhang, L., Cheng, Y.-J., & Zhou, X. (2009). Rate avalanche: Effects on the performance of multi-rate 802.11 wireless networks. Simulation Modelling Practice and Theory, 17(3), 487–503.

    Article  Google Scholar 

  28. Kim, J., Kim, S., Choi, S., & Qiao, D. (2006). CARA: Collision-aware rate adaptation for IEEE 802.11 WLANs. In Proceedings of the 25th IEEE international conference on computer communications (INFOCOM 2006) (pp. 1–11).

  29. Choi, J., Park, K., & Kim, C.-K. (2009). Analysis of cross-layer interaction in multirate 802.11 WLANs. IEEE Transactions on Mobile Computing, 8(5), 682–693.

    Article  Google Scholar 

  30. Heusse, M., Rousseau, F., Berger-Sabbatel, G., & Duda, A. (2003). Performance anomaly of 802.11b. In IEEE Societies twenty-second annual joint conference of the IEEE computer and communications (INFOCOM 2003) (Vol. 2, pp. 836–843).

  31. Tan, G., & Guttag, J. (2004). Time-based fairness improves performance in multi-rate WLANs. In Proceedings of the annual conference on USENIX annual technical conference, ser. ATEC ’04 (pp. 23–23).

  32. Pong, D., & Moors, T. (2004). Fairness and capacity trade-off in IEEE 802.11 WLANs. In 29th Annual IEEE international conference on local computer networks, 2004 (pp. 310–317).

  33. Babu, A. (2007). Fairness analysis of IEEE 802.11 multirate wireless LANs. IEEE Transactions on Vehicular Technology, 56(5), 3073–3088.

    Article  MathSciNet  Google Scholar 

  34. Xylomenos, G., Polyzos, G., Mahonen, P., & Saaranen, M. (2001). TCP performance issues over wireless links. IEEE Communications Magazine, 39(4), 52–58.

    Article  Google Scholar 

  35. Pentikousis, K. (2000). TCP in wired-cum-wireless environments. IEEE Communications Surveys Tutorials, 3(4), 2–14.

    Article  Google Scholar 

  36. Padhye, J., Firoiu, V., Towsley, D., & Kurose, J. (2000). Modeling TCP reno performance: a simple model and its empirical validation. IEEE/ACM Transactions on Networking, 8(2), 133–145.

    Article  Google Scholar 

  37. Floyd, S., Henderson, T., & Gurtov, A. (2004). The new reno modification to TCP’s fast recovery algorithm. RFC 3782 (Standard), Internet Engineering Task Force (online). http://www.ietf.org/rfc/rfc3782.txt.

  38. Pries, R., Staehle, D., Oechsner, S., Menth, M., Menth, S., & Tran-Gia, P. (2009). On the unfair channel access phenomenon in wireless LANs. In 21st international Teletraffic congress, 2009 (ITC 21 2009) (pp. 1–8).

  39. Kamerman, A., & Aben, G. (2000). Net throughput with IEEE 802.11 wireless LANs. In Wireless communications and networking confernce, 2000. (WCNC 2000) IEEE (Vol. 2, pp. 747– 752).

  40. Bruno, R., Conti, M., & Gregori, E. (2004). Throughput evaluation and enhancement of TCP clients in Wi-Fi hot spots. In R. Battiti, M. Conti, & R. Cigno (Eds.), Wireless on-demand network systems, ser. lecture notes in computer science (Vol. 2928, pp. 119–125). Berlin/Heidelberg: Springer.

  41. Ferragut, A., & Paganini, F. (2011). Resource allocation over multirate wireless networks: A network utility maximization perspective. Computer Networks, 55(11), 2658–2674.

    Article  Google Scholar 

  42. Kelly, F., Maulloo, A., & Tan, D. (1998). Rate control for communication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49(3), 237–252.

    Article  MATH  Google Scholar 

  43. Altman, E., & Jimnez, T. (2003). Novel delayed ACK techniques for improving TCP performance in multihop wireless networks. In M. Conti, S. Giordano, E. Gregori, & S. Olariu (Eds.), Personal wireless communications, ser. lecture notes in computer science (Vol. 2775, pp. 237–250). Berlin/Heidelberg: Springer.

  44. Chen, J., Gerla, M., Lee, Y. Z., & Sanadidi, M. (2008). TCP with delayed ack for wireless networks. Ad Hoc Networks, 6(7), 1098–1116.

    Article  Google Scholar 

  45. Braden, R. (1989). Requirements for internet hosts—Communication layers. RFC 1122 (Standard), Internet Engineering Task Force, updated by RFCs 1349, 4379, 5884, 6093, 6298, 6633 (online). http://www.ietf.org/rfc/rfc1122.txt.

  46. Pilosof, S., Ramjee, R., Raz, D., Shavitt, Y., & Sinha, P. (2003). Understanding TCP fairness over wireless LAN. In IEEE societies twenty-second annual joint conference of the IEEE computer and communications (INFOCOM 2003) (Vol. 2, pp. 863–872).

  47. Leith, D., & Clifford, P. (2005). Using the 802.11e EDCF to achieve TCP upload fairness over WLAN links. In Third international symposium on modeling and optimization in mobile, ad hoc, and wireless networks, 2005 (WIOPT 2005) (pp. 109–118).

  48. Leith, D., Clifford, P., Malone, D., & Ng, A. (2005). TCP fairness in. 802.11e WLANs. IEEE Communications Letters, 9(11), 964–966.

    Article  Google Scholar 

  49. Blefari-Melazzi, N., Detti, A., Habib, I., Ordine, A., & Salsano, S. (2007). TCP fairness issues in IEEE 802.11 networks: Problem analysis and solutions based on rate control. IEEE Transactions on Wireless Communications, 6(4), 1346–1355.

    Article  Google Scholar 

  50. Balakrishnan, H., & Padmanabhan, V. (2001). How network asymmetry affects TCP. IEEE Communications Magazine, 39(4), 60–67.

    Article  Google Scholar 

  51. Shioda, S., Iijima, H., Nakamura, T., Sakata, S., Hirano, Y., & Murase, T. (2010) ACK pushout to achieve TCP fairness under the existence of bandwidth asymmetry. In Proceedings of the 5th ACM workshop on Performance monitoring and measurement of heterogeneous wireless and wired networks, ser. PM2HW2N ’10 (pp. 39–47).

  52. Bianchi, G., & Tinnirello, I. (2005). Remarks on IEEE 802.11 DCF performance analysis. IEEE Communications Letters, 9(8), 765–767.

    Article  Google Scholar 

  53. Pickholtz, R., Schilling, D., & Milstein, L. (1982). Theory of spread-spectrum communications—A tutorial. IEEE Transactions on Communications, 30(5), 855–884.

    Article  Google Scholar 

  54. Kim, J. H., & Lee, J. K. (1999). Capture effects of wireless CSMA/CA protocols in Rayleigh and shadow fading channels. IEEE Transactions on Vehicular Technology, 48(4), 1277–1286.

    Article  Google Scholar 

  55. Arnbak, J., & van Blitterswijk, W. (1987). Capacity of slotted ALOHA in Rayleigh-fading channels. IEEE Journal on Selected Areas in Communications, 5(2), 261–269.

    Article  Google Scholar 

  56. Hadzi-Velkov, Z., & Spasenovski, B. (2002). Capture effect in IEEE 802.11 basic service area under influence of Rayleigh fading and near/far effect. In The 13th IEEE international symposium on personal, indoor and mobile radio communications, 2002 (Vol. 1, pp. 172–176).

  57. Ware, C., Judge, J., Chicharo, J., & Dutkiewicz, E. (2000). Unfairness and capture behaviour in 802.11 adhoc networks. In 2000 IEEE international conference on communications, 2000 (ICC 2000) (Vol. 1, pp. 159–163).

  58. Kochut, A., Vasan, A., Shankar, A., & Agrawala, A. (2004). Sniffing out the correct physical layer capture model in 802.11b. In Proceedings of the 12th IEEE international conference on network protocols, 2004 (ICNP 2004) (pp. 252–261).

  59. Lee, J., Kim, W., Lee, S.-J., Jo, D., Ryu, J., Kwon, T., et al. (2007). An experimental study on the capture effect in 802.11a networks. In Proceedings of the second ACM international workshop on Wireless network testbeds, experimental evaluation and characterization, ser. WinTECH ’07 (pp. 19–26).

  60. Lee, J., Ryu, J., Lee, S.-J., & Kwon, T. T. (2010). Improved modeling of IEEE 802.11a PHY through fine-grained measurements. Computer Networks, 54(4), 641–657.

    Article  MATH  Google Scholar 

  61. The WifiChannel and WifiPhy models in ns-3. (online). https://www.nsnam.org/docs/release/3.15/models/singlehtml/index.html#the-wifichannel-and-wifiphy-models.

  62. Lacage, M., & Henderson, T. R. (2006). Yet another network simulator. In Proceeding from the 2006 workshop on ns-2: The IP network simulator, ser. WNS2 ’06.

  63. Daneshgaran, F., Laddomada, M., Mesiti, F., Mondin, M., & Zanolo, M. (2008). Saturation throughput analysis of IEEE 802.11 in the presence of non ideal transmission channel and capture effects. IEEE Transactions on Communications, 56(7), 1178–1188.

    Article  Google Scholar 

  64. Daneshgaran, F., Laddomada, M., Mesiti, F., & Mondin, M. (2008). Unsaturated throughput analysis of IEEE 802.11 in presence of non ideal transmission channel and capture effects. IEEE Transactions on Wireless Communications, 7(4), 1276–1286.

    Article  Google Scholar 

  65. Sutton, G., Liu, R. P., Yang, X., & Collings, I. (2010) Modelling capture effect for 802.11 DCF under Rayleigh fading. In 2010 IEEE international conference on communications (ICC) (pp. 1–6).

  66. Han, S.-J., Nandagopal, T., Bejerano, Y., & Choi, H.-G. (2009). Analysis of spatial unfairness in wireless LANs. In IEEE INFOCOM 2009 (pp. 2043–2051).

  67. Ganu, S., Ramachandran, K., Gruteser, M., Seskar, I., & Deng, J. (2006). Methods for restoring MAC layer fairness in IEEE 802.11 networks with physical layer capture. In Proceedings of the 2nd international workshop on Multi-hop ad hoc networks: from theory to reality, ser. REALMAN ’06 (pp. 7–14).

  68. Jeong, J., Choi, S., Yoo, J., Lee, S., & Kim, C.-K. (2012). Physical layer capture aware MAC for WLANs. Wireless Networks, 1–14.

  69. Abramson, N. (1970) THE ALOHA SYSTEM: Another alternative for computer communications. In Proceedings of the November 17–19, 1970, fall joint computer conference, ser. AFIPS ’70 (Fall) (pp. 281–285).

  70. Tobagi, F., & Kleinrock, L. (1975). Packet switching in radio channels: Part II—the hidden terminal problem in carrier sense multiple-access and the busy-tone solution. IEEE Transactions on Communications, 23(12), 1417–1433.

    Article  MATH  Google Scholar 

  71. Haas, Z., & Deng, J. (2002). Dual busy tone multiple access (DBTMA)—a multiple access control scheme for ad hoc networks. IEEE Transactions on Communications, 50(6), 975–985.

    Article  Google Scholar 

  72. Karn, P. (1990). MACA—a new channel access method for packet radio. In ARRL/CRRL amateur radio 9th computer networking conference.

  73. Bharghavan, V., Demers, A., Shenker, S., & Zhang, L. (1994). MACAW: A media access protocol for wireless LAN’s. In Proceedings of the conference on Communications architectures, protocols and applications, ser. SIGCOMM ’94 (pp. 212–225).

  74. Fullmer, C. L., & Garcia-Luna-Aceves, J. J. (1995). Floor acquisition multiple access (FAMA) for packet-radio networks. In Proceedings of the conference on applications, technologies, architectures, and protocols for computer communication, ser. SIGCOMM ’95 (pp. 262–273).

  75. Fullmer, C. L., & Garcia-Luna-Aceves, J. J. (1997) Solutions to hidden terminal problems in wireless networks. In Proceedings of the ACM SIGCOMM ’97 conference on applications, technologies, architectures, and protocols for computer communication, ser. SIGCOMM ’97 (pp. 39–49).

  76. Borgonovo, F., Capone, A., Cesana, M., & Fratta, L. (2002). RR-ALOHA, a reliable R-ALOHA broadcast channel for ad-hoc inter-vehicle communication networks. In Proceedings of Med-Hoc-Net 2002.

  77. Rahman, K. A., & Tepe, K. E. (2012). Extended sliding frame R-Aloha: Medium access control (MAC) protocol for mobile networks. Ad Hoc Networks, 10(6), 1017–1027.

    Article  Google Scholar 

  78. Gollakota, S., & Katabi, D. (2008). Zigzag decoding: Combating hidden terminals in wireless networks. In Proceedings of the ACM SIGCOMM 2008 conference on Data communication, ser. SIGCOMM ’08 (pp. 159–170).

  79. Halperin, D., Anderson, T., & Wetherall, D. (2008) Taking the sting out of carrier sense: Interference cancellation for wireless LANs. In Proceedings of the 14th ACM international conference on Mobile computing and networking, ser. MobiCom ’08 (pp. 339–350).

  80. Khurana, S., Kahol, A., & Jayasumana, A. (1998). Effect of hidden terminals on the performance of IEEE 802.11 MAC protocol. In Proceedings of the 23rd annual conference on local computer networks, 1998 (LCN ’98) (pp. 12–20).

  81. Khurana, S., Kahol, A., Gupta, S., & Srimani, P. (1999) Performance evaluation of distributed co-ordination function for IEEE 802.11 wireless LAN protocol in presence of mobile and hidden terminals. In Proceedings of the 7th international symposium on modeling, analysis and simulation of computer and telecommunication systems, 1999 (pp. 40–47).

  82. Xu, K., Gerla, M., & Bae, S. (2002). How effective is the IEEE 802.11 RTS/CTS handshake in ad hoc networks. In IEEE global telecommunications conference, 2002 (GLOBECOM ’02) (Vol. 1, pp. 72–76).

  83. Xu, K., Gerla, M., & Bae, S. (2003). Effectiveness of RTS/CTS handshake in IEEE 802.11 based ad hoc networks. Ad Hoc Networks, 1(1), 107–123.

    Article  Google Scholar 

  84. Liu, F., Lin, J., Tao, Z., Korakis, T., Erkip, E., & Panwar, S. (2010). The hidden cost of hidden terminals. In 2010 IEEE International Conference on Communications (ICC) (pp. 1–6).

  85. Iyer, A., Rosenberg, C., & Karnik, A. (2009). What is the right model for wireless channel interference? IEEE Transactions on Wireless Communications, 8(5), 2662–2671.

    Article  Google Scholar 

  86. Tsertou, A., Laurenson, D., & Thompson, J. (2005). A new approach for the throughput analysis of ieee 802.11 in networks with hidden terminals. In International workshop wireless ad-hoc networks.

  87. Wu, H., Zhu, F., Zhang, Q., & Niu, Z. (2006). Analysis of IEEE 802.11 DCF with hidden terminals. In IEEE global telecommunications conference, 2006 (GLOBECOM ’06) (pp. 1–5).

  88. Ekici, O., & Yongacoglu, A. (2008). IEEE 802.11a throughput performance with hidden nodes. IEEE Communications Letters, 12(6), 465–467.

    Article  Google Scholar 

  89. Tsertou, A., & Laurenson, D. (2008). Revisiting the hidden terminal problem in a CSMA/CA wireless network. IEEE Transactions on Mobile Computing, 7(7), 817–831.

    Article  MathSciNet  Google Scholar 

  90. Jang, B., & Sichitiu, M. (2012). IEEE 802.11 saturation throughput analysis in the presence of hidden terminals. IEEE/ACM Transactions on Networking, 20(2), 557–570.

    Article  Google Scholar 

  91. Chandra, R., Mahajan, R., Moscibroda, T., Raghavendra, R., & Bahl, P. (2008). A case for adapting channel width in wireless networks. In Proceedings of the ACM SIGCOMM 2008 conference on data communication, ser. SIGCOMM ’08 (pp. 135–146), Seattle, WA, USA.

  92. Shrivastava, V., Rayanchu, S., Yoonj, J., & Banerjee, S. (2008). 802.11n under the microscope. In Proceedings of the 8th ACM SIGCOMM conference on Internet measurement, ser. IMC ’08 (pp. 105–110), Vouliagmeni, Greece.

  93. Pelechrinis, K., Salonidis, T., Lundgren, H., & Vaidya, N. (2010). Experimental characterization of 802.11n link quality at high rates. In Proceedings of the fifth ACM international workshop on Wireless network testbeds, experimental evaluation and characterization, ser. WiNTECH ’10 (pp. 39–46), Chicago, IL, USA.

  94. Deek, L., Garcia-Villegas, E., Belding, E., Lee, S.-J., & Almeroth, K. (2011). The impact of channel bonding on 802.11n network management. In Proceedings of the seventh conference on emerging networking experiments and technologies, ser. CoNEXT ’11 (pp. 11:1–11:12), Tokyo, Japan.

  95. Arslan, M., Pelechrinis, K., Broustis, I., Singh, S., Krishnamurthy, S., Addepalli, S., et al. (2013). ACORN: An auto-configuration framework for 802.11n WLANs. IEEE/ACM Transactions on Networking, 21(3), 896–909.

    Article  Google Scholar 

  96. Pelechrinis, K., Broustis, I., Salonidis, T., Krishnamurthy, S.V., & Mohapatra, P. (2008). Design and deployment considerations for high performance MIMO testbeds. In Proceedings of the 4th annual international conference on wireless internet, ser. WICON ’08 (pp. 53:1–53:9), Maui, Hawaii.

  97. Zheng, L., & Tse, D. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 49(5), 1073–1096.

    Article  MATH  Google Scholar 

  98. Pefkianakis, I., Hu, Y., Wong, S. H., Yang, H., & Lu, S. (2010). MIMO rate adaptation in 802.11n wireless networks. In Proceedings of the sixteenth annual international conference on mobile computing and networking, ser. MobiCom ’10 (pp. 257–268), Chicago, IL, USA.

  99. Pefkianakis, I., Lee, S.-B., & Lu, S. (2013). Towards MIMO-aware 802.11n rate adaptation. IEEE/ACM Transactions on Networking, 21(3), 692–705.

    Article  Google Scholar 

  100. Li, T., Ni, Q., Malone, D., Leith, D., Xiao, Y., & Turletti, T. (2009). Aggregation with fragment retransmission for very high-speed WLANs. IEEE/ACM Transactions on Networking, 17(2), 591–604.

  101. Lin, Y., & Wong V. (2006). Frame aggregation and optimal frame size adaptation for IEEE 802.11n WLANs. In IEEE global telecommunications conference, 2006. (GLOBECOM ’06) (pp. 1–6).

  102. Abu-Sharkh, O., & Abdelhadi, M. (2011). The impact of multi-rate operation on A-MSDU, A-MPDU and block acknowledgment in greenfield IEEE802.11n wireless LANs. In Wireless advanced (WiAd) (pp. 116–121).

  103. Zubeldía, M., Ferragut, A., & Paganini, F. (2013). Overcoming performance pitfalls in rate-diverse high speed WLANs. Computer Networks, 57(17), 3673–3685.

    Article  Google Scholar 

  104. Kim, M., & Choi, C.-H. (2013). Hidden-node detection in IEEE 802.11n wireless LANs. IEEE Transactions on Vehicular Technology, 62(6), 2724–2734.

    Article  Google Scholar 

  105. Ong, E. H., Kneckt, J., Alanen, O., Chang, Z., Huovinen, T., & Nihtila, T. (2011). IEEE 802.11ac: Enhancements for very high throughput WLANs. In 2011 IEEE 22nd international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 849–853).

  106. Spencer, Q., Peel, C., Swindlehurst, A., & Haardt, M. (2004). An introduction to the multi-user MIMO downlink. IEEE Communications Magazine, 42(10), 60–67.

    Article  Google Scholar 

  107. Chan, D., & Berger, T. (2013). Carrier sense multiple access communications on multipacket reception channels: Theory and applications to IEEE 802.11 wireless networks. IEEE Transactions on Communications, 61(1), 266–278.

    Article  Google Scholar 

  108. IEEE Standard for Information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band. IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2012, as amended by IEEE Std 802.11ae-2012 and IEEE Std 802.11aa-2012) (2012).

  109. WirelessHD (online). http://www.wirelesshd.org/.

  110. Charfi, E., Chaari, L., & Kamoun, L. (2013). PHY/MAC enhancements and QoS mechanisms for very high throughput WLANs: A survey. IEEE Communications Surveys Tutorials, 15(4), 1714– 1735.

  111. Fang, J., Tan, K., Zhang, Y., Chen, S., Shi, L., Zhang, J., et al. (2013). Fine-grained channel access in wireless LAN. IEEE/ACM Transactions on Networking, 21(3), 772–787.

    Article  Google Scholar 

  112. Lin, K. C.-J., Gollakota, S., & Katabi, D. (2011). Random access heterogeneous MIMO networks. In Proceedings of the ACM SIGCOMM 2011 conference (pp. 146–157), Toronto, ON, Canada.

  113. Sen, S., Roy Choudhury, R., & Nelakuditi, S. (2011). No time to countdown: Migrating backoff to the frequency domain. In Proceedings of the 17th annual international conference on mobile computing and networking, ser. MobiCom ’11 (pp. 241–252), Las Vegas, NV, USA.

  114. Feng, X., Zhang, J., Zhang, Q., & Li, B. (2012). Use your frequency wisely: Explore frequency domain for channel contention and ACK. In 2012 Proceedings IEEE INFOCOM (pp. 549–557).

  115. Lindgren, A., Almquist, A., & Schelen, O. (2001). Evaluation of quality of service schemes for IEEE 802.11 wireless LANs. In Proceedings of the 26th annual IEEE conference on local computer networks (LCN 2001) (pp. 348–351).

  116. Bianchi, G., Tinnirello, I., & Scalia, L. (2005). Understanding 802.11e contention-based prioritization mechanisms and their coexistence with legacy 802.11 stations. IEEE Network, 19(4), 28–34.

    Article  Google Scholar 

  117. Robinson, J., & Randhawa, T. (2004). Saturation throughput analysis of IEEE 802.11e Enhanced distributed coordination function. IEEE Journal on Selected Areas in Communications, 22(5), 917–928.

  118. Ramaiyan, V., Kumar, A., & Altman, E. (2008). Fixed point analysis of single cell IEEE 802.11e WLANs: Uniqueness and multistability. IEEE/ACM Transactions on Networking, 16(5), 1080–1093.

    Article  Google Scholar 

  119. Banchs, A., Azcorra, A., Garcia, C., & Cuevas, R. (2005). Applications and challenges of the 802.11e EDCA mechanism: An experimental study. IEEE Network, 19(4), 52–58.

    Article  Google Scholar 

  120. Gao, D., Cai, J., & Ngan, K. N. (2005). Admission control in IEEE 802.11e wireless LANs. IEEE Network, 19(4), 6–13.

    Article  Google Scholar 

  121. Liu, Y., & Meng, M. (2009). Survey of admission control algorithms in IEEE 802.11e wireless LANs. In International conference on future computer and communication (FCC ’09) (pp. 230–233).

  122. Serrano, P., Banchs, A., Patras, P., & Azcorra, A. (2010). Optimal configuration of 802.11e EDCA for real-time and data traffic. IEEE Transactions on Vehicular Technology, 59(5), 2511–2528.

    Article  Google Scholar 

  123. Serrano, P., Patras, P., Mannocci, A., Mancuso, V., & Banchs, A. (2013). Control theoretic optimization of 802.11 WLANs: Implementation and experimental evaluation. Computer Networks, 57(1), 258–272.

    Article  Google Scholar 

  124. Hiertz, G., Denteneer, D., Stibor, L., Zang, Y., Costa, X., & Walke, B. (2010). The IEEE 802.11 universe. IEEE Communications Magazine, 48(1), 62–70.

    Article  Google Scholar 

  125. IEEE Standard for Local and metropolitan area networks: Media Access Control (MAC) Bridges. IEEE Std 802.1D-2004 (Revision of IEEE Std 802.1D-1998) (2004).

  126. Higgins, T. (2009). Does Wi-Fi multimedia (WMM) really do anything? (online). http://www.smallnetbuilder.com/wireless/wireless-features/30833-does-wi-fi-multimedia-wmm-really-do-anything-part-1.

  127. Bianchi, G., Di Stefano, A., Giaconia, C., Scalia, L., Terrazzino, G., & Tinnirello, I. (2007). Experimental assessment of the backoff behavior of commercial IEEE 802.11b network cards. In 26th IEEE international conference on computer communications (INFOCOM 2007) (pp. 1181–1189), IEEE.

  128. Bolla, R., Rapuzzi, R., & Repetto, M. (2009). On the effectiveness of IEEE 802.11e implementations in real hardware. In 6th International symposium on wireless communication systems (ISWCS 2009) (pp. 303–307).

  129. Tang, D., & Baker, M. (2000). Analysis of a local-area wireless network. In Proceedings of the 6th annual international conference on Mobile computing and networking ser. MobiCom ’00 (pp. 1–10).

  130. Tang, D., & Baker, M. (2002). Analysis of a metropolitan-area wireless network. Wireless Networks, 8, 107–120.

    Article  MATH  Google Scholar 

  131. Balachandran, A., Voelker, G. M., Bahl, P., & Rangan, P. V. (2002). Characterizing user behavior and network performance in a public wireless LAN. In Proceedings of the 2002 ACM SIGMETRICS international conference on measurement and modeling of computer systems, ser. SIGMETRICS ’02 (pp. 195–205).

  132. Balazinska, M., & Castro, P. (2003). Characterizing mobility and network usage in a corporate wireless local-area network. In Proceedings of the 1st international conference on Mobile systems, applications and services, ser. MobiSys ’03 (pp. 303–316).

  133. Schwab, D., & Bunt, R. (2004). Characterising the use of a campus wireless network. In Twenty-third annualjoint conference of the IEEE computer and communications societies (Vol. 2, pp. 862–870).

  134. Henderson, T., Kotz, D., & Abyzov, I. (2004). The changing usage of a mature campus-wide wireless network. In Proceedings of the 10th annual international conference on mobile computing and networking, ser. MobiCom ’04 (pp. 187–201).

  135. Kotz, D., & Essien, K. (2005). Analysis of a campus-wide wireless network. Wireless Networks, 11(1–2), 115–133.

    Article  Google Scholar 

  136. Henderson, T., Kotz, D., & Abyzov, I. (2008). The changing usage of a mature campus-wide wireless network. Computer Networks, 52(14), 2690–2712.

    Article  MATH  Google Scholar 

  137. Afanasyev, M., Chen, T., Voelker, G. M., & Snoeren, A. C. (2008). Analysis of a mixed-use urban WiFi network: When metropolitan becomes neapolitan. In Proceedings of the 8th ACM SIGCOMM conference on Internet measurement, ser. IMC ’08 (pp. 85–98).

  138. Afanasyev, M., Chen, T., Voelker, G., & Snoeren, A. (2010). Usage patterns in an urban WiFi network. IEEE/ACM Transactions on Networking, 18(5), 1359–1372.

    Article  Google Scholar 

  139. Na, C., Chen, J., & Rappaport, T. (2006). Measured traffic statistics and throughput of IEEE 802.11b public WLAN hotspots with three different applications. IEEE Transactions on Wireless Communications, 5(11), 3296–3305.

    Article  Google Scholar 

  140. Halepovic, E., Williamson, C., & Ghaderi, M. (2009). Wireless data traffic: A decade of change. IEEE Network, 23(2), 20–26.

    Article  Google Scholar 

  141. Yeo, J., Youssef, M., & Agrawala, A. (2004). A framework for wireless LAN monitoring and its applications. In Proceedings of the 3rd ACM workshop on Wireless security, ser. WiSe ’04 (pp. 70–79).

  142. Yeo, J., Youssef, M., Henderson, T., & Agrawala, A. (2005). An accurate technique for measuring the wireless side of wireless networks. In Papers presented at the 2005 workshop on wireless traffic measurements and modeling, ser. WiTMeMo ’05 (pp. 13–18).

  143. Rodrig, M., Reis, C., Mahajan, R., Wetherall, D., & Zahorjan, J. (2005). Measurement-based characterization of 802.11 in a hotspot setting. In Proceedings of the 2005 ACM SIGCOMM workshop on Experimental approaches to wireless network design and analysis, ser. E-WIND ’05 (pp. 5–10).

  144. Schulman, A., Levin, D., & Spring, N. (2008). On the fidelity of 802.11 packet traces. In Passive and active network measurement, ser. lecture notes in computer science (Vol. 4979, pp. 132–141).

  145. Mahajan, R., Rodrig, M., Wetherall, D., & Zahorjan, J. (2006). Analyzing the MAC-level behavior of wireless networks in the wild. In Proceedings of the 2006 conference on applications, technologies, architectures, and protocols for computer communications, ser. SIGCOMM ’06 (pp. 75–86).

  146. Cheng, Y.-C., Bellardo, J., Benkö, P., Snoeren, A. C., Voelker, G. M., & Savage, S. (2006). Jigsaw: Solving the puzzle of enterprise 802.11 analysis. In Proceedings of the 2006 conference on Applications, technologies, architectures, and protocols for computer communications, ser. SIGCOMM ’06 (pp. 39–50).

  147. Lakshminarayanan, K., Seshan, S., & Steenkiste, P. (2011). Understanding 802.11 performance in heterogeneous environments. In Proceedings of the 2nd ACM SIGCOMM workshop on Home networks, ser. HomeNets ’11 (pp. 43–48).

  148. Shrivastava, V., Rayanchu, S., Banerjee, S., & Papagiannaki, K. (2011). PIE in the sky: Online passive interference estimation for enterprise WLANs. In Proceedings of the 8th USENIX conference on Networked systems design and implementation, ser. NSDI’11 (pp. 25–25).

  149. Dujovne, D., Turletti, T., & Filali, F. (2010). A taxonomy of IEEE 802.11 wireless parameters and open source measurement tools. IEEE Communications Surveys Tutorials, 12(2), 249–262.

    Article  Google Scholar 

  150. Adya, A., Bahl, P., Chandra, R., & Qiu, L. (2004). Architecture and techniques for diagnosing faults in IEEE 802.11 infrastructure networks. In Proceedings of the 10th annual international conference on Mobile computing and networking, ser. MobiCom ’04 (pp. 30–44).

  151. Bahl, P., Chandra, R., Padhye, J., Ravindranath, L., Singh, M., Wolman, A., et al. (2006). Enhancing the security of corporate Wi-Fi networks using DAIR. In Proceedings of the 4th international conference on Mobile systems, applications and services, ser. MobiSys ’06 (pp. 1–14).

  152. Sheth, A., Doerr, C., Grunwald, D., Han, R., & Sicker, D. (2006). MOJO: A distributed physical layer anomaly detection system for 802.11 WLANs. In Proceedings of the 4th international conference on mobile systems, applications and services, ser. MobiSys ’06 (pp. 191–204).

  153. Cheng, Y.-C., Afanasyev, M., Verkaik, P., Benkö, P., Chiang, J., Snoeren, A.C., et al. (2007). Automating cross-layer diagnosis of enterprise wireless networks. In Proceedings of the 2007 conference on applications, technologies, architectures, and protocols for computer communications, ser. SIGCOMM ’07 (pp. 25–36).

  154. Mahanti, A., Williamson, C., & Arlitt, M. (2007). Remote analysis of a distributed WLAN using passive wireless-side measurement. Performance Evaluation, 64(912), 909–932.

    Article  Google Scholar 

  155. Jardosh, A. P., Ramachandran, K. N., Almeroth, K. C., & Belding-Royer, E. M. (2005). Understanding link-layer behavior in highly congested IEEE 802.11b wireless networks. In Proceedings of the 2005 ACM SIGCOMM workshop on experimental approaches to wireless network design and analysis, ser. E-WIND ’05 (pp. 11–16).

  156. Understanding congestion in IEEE 802.11b wireless networks. In Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement, ser. IMC ’05. Berkeley, CA, USA: USENIX Association, 2005, pp. 25–25 (online). http://dl.acm.org/citation.cfm?id=1251086.1251111.

  157. Bianchi, G., Formisano, F., & Giustiniano, D. (2006). 802.11b/g link level measurements for an outdoor wireless campus network. In International symposium on a world of wireless, mobile and multimedia networks, 2006 (WoWMoM 2006).

  158. Giustiniano, D., Bianchi, G., Scalia, L., & Tinnirello, I. (2008). An explanation for unexpected 802.11 outdoor link-level measurement results. In IEEE the 27th conference on computer communications (INFOCOM 2008) (pp. 2432–2440).

  159. Tinnirello, I., Giustiniano, D., Scalia, L., & Bianchi, G. (2009). On the side-effects of proprietary solutions for fading and interference mitigation in IEEE 802.11b/g outdoor links. Computer Networks, 53(2), 141–152.

    Article  Google Scholar 

  160. 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects, 3GPP system to Wireless Local Area Network (WLAN) interworking; System description (Release 11), Sept. (2012).

  161. 3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network, Generic Access Network (GAN); Stage 2 (Release 11), Sept. (2012).

  162. IEEE Standard for Local and Metropolitan Area Networks- Part 21: Media Independent Handover, IEEE Std 802.21-2008 (2009).

  163. Piri, E., & Pentikousis, K. (2009). IEEE 802.21: Media-independent Handover services. The Internet Protocol Journal, 12(2).

  164. Ferrus, R., Sallent, O., & Agusti, R. (2010). Interworking in heterogeneous wireless networks: Comprehensive framework and future trends. IEEE Wireless Communications, 17(2), 22–31.

    Article  Google Scholar 

  165. Kassar, M., Kervella, B., & Pujolle, G. (2008). An overview of vertical handover decision strategies in heterogeneous wireless networks. Computer Communications, 31(10), 2607–2620.

    Article  Google Scholar 

  166. Márquez-Barja, J., Calafate, C. T., Cano, J.-C., & Manzoni, P. (2011). An overview of vertical handover techniques: Algorithms, protocols and tools. Computer Communications, 34(8), 985–997.

    Article  Google Scholar 

  167. Ali, T., & Saquib, M. (2013). Analytical framework for WLAN-cellular voice handover evaluation. IEEE Transactions on Mobile Computing, 12(3), 447–460.

    Article  Google Scholar 

  168. Marce, O., Tran, H.-H., & Tuffin, B. (2013). Double-sided auctions applied to vertical handover for mobility management in wireless networks. Journal of Network and Systems Management, 1–24.

  169. FCC. (2008). Second report and order and memorandum opinion and order, ET Docket No. 08-260.

  170. Shin, K., Kim, H., Min, A., & Kumar, A. (2010). Cognitive radios for dynamic spectrum access: From concept to reality. IEEE Wireless Communications, 17(6), 64–74.

    Article  Google Scholar 

  171. IEEE Standard for Information Technology-Telecommunications and information exchange between systems Wireless Regional Area Networks (WRAN)-Specific requirements Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands. IEEE Std 802.22-2011 (2011).

  172. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  173. Qiu, R. C., Hu, Z., Li, H., & Wicks, M. C. (2012). Cognitive radio communication and networking: Principles and practice. New York: Wiley.

    Book  Google Scholar 

  174. PhySimWiFi for NS-3—An IEEE 802.11 OFDM physical layer simulator within NS-3 (online). http://dsn.tm.kit.edu/ns3-physim.php.

  175. Cardenas, A., Radosavac, S., & Baras, J. (2009). Evaluation of detection algorithms for MAC layer misbehavior: Theory and experiments. IEEE/ACM Transactions on Networking, 17(2), 605–617.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Universidad de la República’s CSIC i+d project “Algoritmos de Control de Acceso al Medio en Redes Inalámbricas”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larroca, F., Rodríguez, F. An Overview of WLAN Performance, Some Important Case-Scenarios and Their Associated Models. Wireless Pers Commun 79, 131–184 (2014). https://doi.org/10.1007/s11277-014-1846-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1846-4

Keywords

Navigation