Skip to main content
Log in

Another Look at Performance Analysis of Energy Detector with Multichannel Reception in Nakagami-\(m\) Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Energy detection is the most dominant method used for reliable wireless detection owing to its non-coherent structure and low implementation complexity. The main challenge for performance analysis of energy detection comes from the generalized Marcum \(Q\)-function involved. To overcome this hurdle, this paper revisits the detection problem and introduces a new framework based on the incomplete Toronto function that allows analyzing the performance for non-fading and fading scenarios in a very simple way. Based on newly-derived expressions for the incomplete Toronto function, performance analysis of energy detection is firstly formulated for unfaded Gaussian noise channels. Second, novel closed-from expressions are derived for the average probability of detection over Nakagami-\(m\) fading channels. The analyses are based on two approaches: the probability density function-based and the moment generating function-based (MGF). The former uses the canonical series representation of the incomplete Toronto function while the latter employs MGF-derivative method which is based on the \(n\)th order derivative of the MGF. The analysis is then extended to cases with diversity receptions including maximal ratio combining and switch and stay combining (SSC). For the SSC diversity case, an analytical expression that can be used to determine optimum switching thresholds in a maximum average detection probability is also derived. The analytical results are verified by numerical computations and Monte-Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. This is evident by the fact that the Kampé de Fériet function is included as special case for \(n = 2\).

  2. Note that \({E_\gamma }[.]\) denotes the expectation over the random variable \(\gamma \).

  3. Note that, when \(p \rightarrow \infty \), the (52) expression reduces to the infinite series in [30, eq. (8.445)].

References

  1. Van Trees, H. L. (2004). Detection, estimation, and modulation theory, part III, radar-sonar signal processing and Gaussian signals in noise. New York: Wiley.

    Google Scholar 

  2. Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116.

    Article  Google Scholar 

  3. Čabrić, D., Mishra, S. M., & Brodersen, R. W. (2004). Implementation issues in spectrum sensing for cognitive radios. In IEEE Conference on Signals, Systems and Computers, Vol. 1, pp. 772–776.

  4. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Computer Networks Journal, 50(13), 2127–2159.

    Article  MATH  Google Scholar 

  5. Umar, R., Sheikh, A., & Deriche, M. (2013). Unveiling the hidden sssumptions of energy detector based spectrum sensing for cognitive radios. IEEE Communications Surveys & Tutorials, 16(2), 713–728.

    Article  Google Scholar 

  6. D’Amico, A. A., Mengali, U., & Arias-de-Reyna, E. (2007). Energy-detection UWB receivers with multiple energy measurements. IEEE Transactions on Wireless Communications, 6(7), 2652–2659.

    Article  Google Scholar 

  7. Diniz Wellisch, W., & Noll Barreto, A. (2013). Spectrum sensing of TETRA systems through time-frequency analysis. IEEE Latin America Transactions, 11(3), 913–919.

    Article  Google Scholar 

  8. Egan, J. P. (1975). Signal detection theory and ROC analysis. Waltham: Academic Press.

    Google Scholar 

  9. Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of IEEE, 55(4), 523–531.

    Article  Google Scholar 

  10. Digham, F. F., Alouni, M. S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24.

    Article  Google Scholar 

  11. Herath, S. P., Rajatheva, N., & Tellambura, C. (2011). Energy detection of unknown signals in fading and diversity reception. IEEE Transactions on Communications, 59(9), 2443–2453.

    Article  Google Scholar 

  12. Bagheri, A., Shahini, A., & Shahzadi, A. (2013). Analytical and learning-based spectrum sensing over channels with both fading and shadowing. In IEEE international conference on connected vehicles and Expo (ICCVE) (pp. 699–706).

  13. Shahini, A., Bagheri, A., & Shahzadi, A. (2013). A unified appraoch to performance analysis of energy detection with diversity receivers over Nakagami-\(m\) fading channels. In IEEE international conference on connected vehicles and Expo (ICCVE) (pp. 707–712).

  14. Sofotasios, P., Rebeiz, E., Zhang, L., Tsiftsis, T. A., Čabrić, D., & Freear, S. (2013). Energy detection based spectrum sensing over \(\kappa - \mu \) and extreme \(\kappa - \mu \) fading channels. IEEE Transactions on Vehicular Technology, 62(3), 1031–1040.

    Article  Google Scholar 

  15. Tellambura, C., Annamalai, A., & Bhargava, V. K. (2003). Closed-form and inifinite series solutions for the MGF of a dual-diversity selection combiner output in bivariate Nakagami fading. IEEE Transactions on Communications, 51(4), 539–542.

    Article  Google Scholar 

  16. Atapattu, S., Tellambura, C., & Jiang, H. (2009). Relay based cooperative spectrum sensing in cognitive radio networks. In IEEE international global communications conference (GLOBECOM) (pp. 1–5).

  17. Atapattu, S., Tellambura, C., & Jiang, H. (2011). Energy detection based cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 10(4), 1232–1241.

    Article  Google Scholar 

  18. Banjade, V. R. S., Rajatheva, N., & Tellambura, C. (2012). Performance analysis of energy detection with multiple correlated antenna cognitive radio in Nakagami-\(m\) fading. IEEE Communications Letters, 16(4), 502–505.

    Article  Google Scholar 

  19. Annamalai, A., Olabiyi, O., Alam, S., Odejide, O., & Vaman, D. (2011). Unified analysis of energy detection of unknown signals over generalized fading channels. In IEEE international wireless communications and mobile computing conference (IWCMC) (pp. 636–641).

  20. Digham, F. F., Alouini, M. S., & Simon, M. K. (2003). On the energy detection of unknown signals over fading channels. In IEEE international conference on communications (ICC) (Vol. 5, pp. 3575–3579).

  21. Ko, Y. C., Alouini, M. S., & Simon, M. K. (2000). Analysis and optimization of switched diversity systems. IEEE Transactions on Vehicular Technology, 49(5), 1813–1831.

    Article  Google Scholar 

  22. Marcum, J. I., & Swerling, P. (1960). Studies of target detection by pulsed radar. IEEE Transactions on Information Theory, 6, 227–228.

  23. Simon, M. K., & Alouini, M. S. (2000). Digital communication over fading channels. New York: Wiley.

    Book  Google Scholar 

  24. Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions: With formulas, graphs, and mathematical tables. New York: Courier Dover Publications.

    MATH  Google Scholar 

  25. Nakagami, M. (1960). The \(m\)-distribution-A general formula of intensity distribution of rapid fading. In Statistical Methods in Radio Wave Propagation. UK: Pergamon Press, Vol. 47, pp. 3–36.

  26. Srivastava, H. M., & Daoust, M. C. (1972). A note on the convergence of Kampé de Fériet’s double hypergeometric series. Mathematische Nachrichten, 5, 151–159.

    Article  MathSciNet  Google Scholar 

  27. Exton, H. (1976). Multiple hypergeometric functions and applications. New York: Wiley.

  28. Srivastava, H. M., & Manocha, H. L. (1984). A treatise on generating functions. UK: Ellis Horwood Series.

    MATH  Google Scholar 

  29. Sagon, H. (1966). Numerical calculation of the incomplete Toronto function. Proceedings of the IEEE, 54(8), 1095–1095.

    Article  Google Scholar 

  30. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products. New York: Academic press.

    MATH  Google Scholar 

  31. Stüber, G. L. (2011). Principles of mobile communication. Berlin: Springer.

    Google Scholar 

  32. Wolfram (2013). The Wolfram functions site.http://functions.wolfram.com/07.33.17.0007.01

  33. Li, L.-L., Li, F., & Gross, F. B. (2006). A new polynomial approximation for \({J_m}\) Bessel functions. Journal of Applied Mathematics and Communication, 183, 1220–1225.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Bagheri.

Appendices

Appendix 1: Proof of Theorem 1

For a real number \(n\), the function \({I_n}\left( x \right) \) can be expressed as [30, eq. (8.445)],

$$\begin{aligned} {I_n}\left( x \right) = \sum \limits _{l = 0}^\infty {\frac{1}{{l!\varGamma \left( {n + l + 1} \right) }}{{\left( {\frac{x}{2}} \right) }^{n + 2l}}}. \end{aligned}$$
(47)

Substituting (47) in (7) and interchanging summation and integration, one obtains,

$$\begin{aligned} {T_B}\left( {m,n,r} \right) = \sum \limits _{l = 0}^\infty {\frac{{2{e^{ - {r^2}}}{r^{2\left( {n + l} \right) - m + 1}}}}{{l!\varGamma \left( {n + l + 1} \right) }}\int \limits _0^B {{t^{2l + m}}{e^{ - {t^2}}}dt} }. \end{aligned}$$
(48)

Using [30, eq. (3.381-8)] and after that [30, eq. (8.354-2)], the \({T_B}\left( {m,n,r} \right) \) can be evaluated as,

$$\begin{aligned} {T_B}\left( {m,n,r} \right) = \sum \limits _{l = 0}^\infty {\sum \limits _{i = 0}^\infty {\frac{{2{{\left( { - 1} \right) }^i}{e^{ - {r^2}}}{r^{2n + 2l - m + 1}}{B^{2l + 2i + m + 1}}}}{{i!l!\left( {2l + 2i + m + 1} \right) \varGamma \left( {n + l + 1} \right) }}} }. \end{aligned}$$
(49)

By recalling that the Pochhammer function is defined as \(\varGamma \left( {x + n} \right) = {(x)_n}\varGamma \left( x \right) \), the Gamma function in (49) can be expressed as \(\varGamma \left( {n + l + 1} \right) = \varGamma \left( {n + 1} \right) {\left( {n + 1} \right) _l}\). Furthermore, the \(\left( {2l + 2i + m + 1} \right) \) term in (49) can be re-written as,

$$\begin{aligned} 2l + 2i + m + 1 = \frac{{2\varGamma \left( {\frac{{m + 3}}{2}} \right) {{\left( {\frac{{m + 3}}{2}} \right) }_{l + i}}}}{{\varGamma \left( {\frac{{m + 1}}{2}} \right) {{\left( {\frac{{m + 1}}{2}} \right) }_{l + i}}}} \end{aligned}$$
(50)

By substituting accordingly in (49) and carrying our basic algebraic manipulations, one obtains

$$\begin{aligned} {T_B}\left( {m,n,r} \right) = \frac{{2{e^{ - {r^2}}}{r^{2n - m + 1}}{B^{m + 1}}}}{{\left( {m + 1} \right) \varGamma \left( {n + 1} \right) }}\sum \limits _{l = 0}^\infty {\sum \limits _{i = 0}^\infty {\frac{{{{\left( {\frac{{m + 1}}{2}} \right) }_{l + i}}}}{{{{\left( {\frac{{m + 3}}{2}} \right) }_{l + i}}{{\left( {n + 1} \right) }_l}}}\frac{{{{\left( {{r^2}{B^2}} \right) }^l}}}{{l!}}\frac{{{{\left( { - {B^2}} \right) }^i}}}{{i!}}} }. \end{aligned}$$
(51)

Notably, the above double series can be expressed in closed-form in terms of the Kampé de Fériet function as in (11), which completes the proof.

Appendix 2: Proof of Theorem 2

By utilizing the tight approximation of the \({I_n}\left( x \right) \) function [33, eq. (19)], namely,

$$\begin{aligned} {I_n}\left( x \right) \simeq \sum \limits _{l = 0}^p {\frac{{\varGamma \left( {p + l} \right) {p^{1 - 2l}}}}{{l!\varGamma \left( {1 + p - l} \right) \varGamma \left( {n + l + 1} \right) }}{{\left( {\frac{x}{2}} \right) }^{n + 2l}}} , \end{aligned}$$
(52)

which is valid for \(0 < x < 2p\) Footnote 3, and after substituting in (7) one obtains,

$$\begin{aligned} {T_B}\left( {m,n,r} \right) = \sum \limits _{l = 0}^p {\frac{{2{p^{1 - 2l}}{e^{ - {r^2}}}{r^{2\left( {n + l} \right) - m + 1}}\varGamma \left( {l + p} \right) }}{{l!\varGamma \left( {1 + p - l} \right) \varGamma \left( {1 + l + n} \right) }}\int \limits _0^B {{t^{2l + m}}{e^{ - {t^2}}}dt} }. \end{aligned}$$
(53)

The above integral can be expressed in closed-form according to [30, eq. (3.381-8)], namely,

$$\begin{aligned} \int \limits _0^B {{t^{2l + m}}{e^{ - {t^2}}}dt} = \frac{1}{2}\gamma \left( {l + \frac{{m + 1}}{2},{B^2}} \right) . \end{aligned}$$
(54)

Thus, by substituting (54) into (53) and importantly with the aid of the identity \(\varGamma \left( {x - n} \right) {\left( {1 - x} \right) _n} = {\left( { - 1} \right) ^n}\varGamma \left( x \right) \), (12) is deduce. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, A., Shahzadi, A. Another Look at Performance Analysis of Energy Detector with Multichannel Reception in Nakagami-\(m\) Fading Channels. Wireless Pers Commun 79, 527–544 (2014). https://doi.org/10.1007/s11277-014-1871-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1871-3

Keywords

Navigation