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Abstract: 

Past studies of WiFi-based indoor positioning systems (IPS) have mainly been divided into three 

types of positioning: proximity, trilateration, and scene analysis. This paper proposes a WiFi-based 

weighted screening method (WSM) to improve displacement error in trilateration. WSM is 

designed for part of pedestrian navigation in indoor environment which most likely use smart 

phone as the WiFi signal detector. Thus the less computational power consuming, irregular 

deploying position of APs and the irregular RSSI variation are all take into consideration when 

designing WSM. Experiment results show that this method performs better than conventional 

matrix method and the error correction algorithm (ECA), one trilateration in IPS. 
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1. Introduction 

In wireless indoor positioning systems (IPS), because of the presence of 

numerous variables, such as structural complexity of the building itself, the 

influence of the indoor crowd, the coverage and stability of the wireless signal, 

and the accuracy and sensitivity of the positioning instrument when measure the 

wireless signal, it is difficult for any technological solutions to current problems 

in IPS to be comprehensive. Therefore, system performance can be analyzed in 

the following six directions[1]: 

 Accuracy: Accuracy measures the size of the gap between the actual 

observed position of a point (called observation point hereafter) and the 

position of the same point estimated by the IPS (called estimation point 

hereafter), also referred to as system estimation error. Common calculation 

methods involve estimation error averaging. In IPS, the system positioning 

performance is primarily based on the accuracy. 

 Precision: Precision is a measure of the size of the gap between the 

estimation points. An accurate cumulative distribution function (CDF) can be 

used to calculate the strengths and weaknesses of the precision; where the 

higher the concentration of the distribution curves, the higher the precision. 

The main factors affecting the precision include the stability of the signal 

source (transmitter) and the merits of the system positioning algorithm. 

 Complexity: Complexity is defined as the amount of computing time 

required for the positioning algorithm; i.e., the speed of real-time positioning. 

The lower the positioning complexity, the faster the locating rate. 

 Robustness: Good system robustness is such that when during the positioning 

process, even if one of the signal sources acts abnormally or cannot be 

received, the IPS can still perform normal positioning under a certain level of 

accuracy. 

 Scalability: Scalability is the range supported by the IPS, including signal 

coverage, geographical service area, and 2D/3D spatial positioning. 
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 Cost: System construction costs include time consumed, money spent, or 

even the size, weight, and power consumption of hardware. They are all 

within the scope of consideration. 

The 6 directions above show the core design ideas for the IPS. At present, 

most common IPS use a variety of wireless transmission technologies, such as 

WiFi [2-6], Bluetooth [7], infrared [8], radio frequency identification (RFID) [9], 

Cell-ID based signals [10], ultrasonic sensors [11], image recognition [12], and 

laser [13]. Among these techniques, additional equipment is required for 

ultrasonic sensors and laser technologies and is too expensive. Due to the short 

coverage range of the Bluetooth, a large number of Bluetooth signal sources are 

required to cover the whole area of the indoor environment. The image 

recognition approach relies on high-speed and real-time computing to establish a 

database of a large number of image nodes for matching. Even though the Cell-ID 

approach has wider signal coverage and equipment penetration, in a complex 

indoor environment where signal strength is not related to the inverse of the 

square of the distance, it has difficulty in achieving signal coverage in indoor 

positioning. 

In consideration of acceptable accuracy and instrument penetration, WiFi has 

gradually becomes a major wireless technology for IPS. IPS that uses WiFi has 

two main advantages. First, wireless network-based hardware environments have 

reached a ready-to-use level of penetration, without any need for new 

modifications or installations. Second, mobile devices with the IEEE 802.11 WiFi 

connectivity function, such as laptop computers, PDAs, and smart phones, have 

become widespread. 

WiFi-based positioning methods are currently divided into three main 

positioning principles: proximity, trilateration, and scene analysis. Proximity 

positioning uses the access point (AP) of the strongest received signal strength 

indication (RSSI) as the location as the estimated point. Such an algorithm is 

relatively simple; even though it has a fast positioning speed, its accuracy is low 

when compared to other methods. In general, positioning error is related to the 

density of AP provisioning. 

The scene analysis positioning is divided into two stages. Wireless signal 

fingerprint is first sampled when the system is offline, which is then compared 

with signal data received by the observation point when the system is online. The 
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advantage of this approach is that it can reduce multi-path problems [1]. The 

sampling intensity from this method directly affects positioning accuracy. Thus, in 

the system setup process, more time is required for high-density sampling in an 

indoor environment. Another problem in this method is it has less robustness. 

When one or more signal sources act abnormally, the scene analysis method is 

prone to deduce a large error. Periodically fingerprint resampling is needed in the 

method in IPS.  

The trilateration positioning method uses three or more APs to calculate 

distance using time differences in signal receptions or signal strength, which are 

then used to estimate the location of the user. They often include time of arrival 

(TOA), time difference of arrival (TDOA), angle of arrival (AOA), and the RSSI. 

TOA and TDOA are methods that use transmission speed and total time or the 

product of time differences of waves in space to calculate the distance from the 

signal source to the observation point. However, the disadvantage is that all APs 

must be synchronized. Any error in time will cause a huge error in distance. 

Collisions arising from a large number of user connections will also cause time 

error. Thus, this method is more applicable in CDMA-based systems. AOA is the 

use of the received signal angle at several different antennas to measure user 

location with an antenna array, which is not installed in a general mobile device. 

The current WiFi system can only work with the RSSI method, which uses a 

wireless signal transmission attenuation model to calculate the distance from the 

observation point to the AP. The multi-path effect generated from wireless signals 

in an indoor environment has made it much more difficult for the trilateration 

method to achieve high-accuracy positioning, which results in failure to obtain 

acceptable levels of accuracy and precision. 

Among these three positioning methods mentioned above in IPS, trilateration 

outperforms than others from the point of view of a composite indicator including 

accuracy, complexity, robustness, scalability, and cost. This paper proposes a 

weighted screening method (WSM) to improve estimated errors generated from 

current trilateration methods relative to actual locations using WiFi-based 

trilateration. The current IPS is expected to offer pedestrian navigation in indoor 

environment, and use potable smartphone to be signal detection device, which 

means that there is less computation capacity for IPS. If we want obtain the 

positioning result quickly, the algorithm for IPS should not spend too much time.  
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Meanwhile, most smartphone which detect and report the value of RSSI in integer 

value and with the step scale of one dBm. It will result in a large estimation error 

when calculating distance from AP to the observation point using wireless signal 

attenuation model. The WSM is a low complexity algorithm which can relieve the 

use of smartphone computational resource. WSM also suit for IPS with inaccurate 

RSSI estimation. The rest of this paper is as follows: Section 2 describes the 

trilateration algorithm in detail, and Section 3 details the WSM. The experiment 

results of WSM are presented in the Section 4. Concluding remarks are made in 

Section 5. 

 

2. Trilateration 

Trilateration is a method of calculating the position of observation points 

from the distance between the known positions of three reference points and the 

observation point; the basic concept of which is shown in Fig. 1. Trilateration was 

first used in global positioning systems (GPS). The principle behind trilateration 

positioning is to trace out a sphere using a line, represented by the distance 

between the signal source and the observation point, and a center point, 

represented by the signal source. The surface of the sphere represents the pseudo-

range of the equivalent signal strength of a certain signal source, with observation 

points located at any point on the surface of the sphere. 

If two spheres are to intersect at more than one point in a three-dimensional 

space, then the resulting intersection will be a circle. A third sphere must also 

intersect with the circle at a minimum of two points. If necessary, a fourth sphere 

can be used to determine which one of the points is an observation point. An 

example of this approach is the application of trilateration in GPS. Similarly, a 

pseudo-range in a two-dimensional space is also a circle, with two circles 

intersecting at a minimum of two points, and a third circle is used to determine the 

location of the observation point. 

We have been proposed a method to reduce the signal space from 3-D to 2-D 

for IPS [16], so that a 2-D trilateration is usable in IPS. Using the basic definition 

of trilateration in two-dimensional space, we can set each of the three known 

reference points as the center of a circle, with the coordinates (mi, ni). The 
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distance between the reference point and the observation point (a, b) is set to be 

the radius ri, where i = 1, 2, 3. The simultaneous equation is as follows: 
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These simultaneous equations are turned into matrices, and then simplified 

into the form x = A-1b using Gaussian elimination to obtain the coordinates of the 

observation point: 
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In trilateration, the distance between the observation point and a reference 

point (i.e., the position of APs) is obtained through inversion using the signal 

attenuation model. The positioning error would result from numerical errors on 

the inverse. The positional relationship between reference points also affects the 

accuracy of positioning. This is illustrated in Fig. 2 and stated as follows: The 

dilution of precision (DOP) coefficient (also called geometric dilution of 

precision, GDOP, which is to state how errors in the measurement will affect the 

final state estimation in GPS) can be used to calculate the influence that reference 

point positions have on accuracy, as shown in Fig. 2. In this figure, the error range 

cause by inversion generates distance error are indicated by gray area for each AP. 

The uncertainty in the estimated position is indicated by the insertion area of two 

gray concentric circles, i.e., the dark-gray area. In Fig. 2(a), the position 

uncertainty is smaller than Fig. 2(b) (i.e., lower DOP). That is because in Fig. 

2(b), two APs are closer than Fig. 2(a). Although the measurement uncertainty is 

the same, the position uncertainty is considerably larger than that in Fig. 2(a), i.e., 

higher DOP. A reference node selection algorithm based on trilateration (RNST) 

was proposed to find three reference points among many that can be connected 

into an equilateral triangle, thus reducing the value of DOP [15]. 

Chen and Luo [4] added correction parameters in the obstacles attenuation 

factor (OAF) to the wave transmission model to reduce the error generated by the 

interference from walls or floors inside a building when RSSI is converted into 

distance, as shown in the following equation. The results show a significant 

decline in the positioning error: 
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OAF
d

d
dPdP n  )log(10)()(

0

0
 (3) 

where P(d) represents the signal strength at distance d from the position of the 

transmitter; P(d0) represents the signal strength at distance d0 from the position of 

the transmitter, which is the distance, called the reference distance, at which the 

intensity of the signal’s strength can be measured and recorded in advance; n is 

the channel attenuation coefficient; and OAF is the obstacles attenuation factor, 

which contains all the influence from the multi-path effects caused by internal 

barriers such as walls and partitions. In this model, the method for calculating 

OAF becomes a vital issue. In practical applications, this method needs to 

measure specific OAF value in each spatial position for increasing its positioning 

accuracy, while showing a larger amount of variation for environmental changes 

with slight differences, such as the positioning around a corner. 

Moradi et al. [5] proposed an error correction algorithm (ECA), which uses a 

trilateration matrix to estimate the maximum offset error E. In ECA, the radius 

estimation error is carried into the radius variation of the three circles, with a view 

of getting even closer to the distance length that the observation points should be 

able to calculate by matrix method. As depicted in Fig. 3, the ECA algorithm 

divides the situation with the different circles layout into four types. These 

situations are explained as follows: (1) Three circles intersect to each other, but 

not at the same point; (2) one of the three circles intersects with the other two 

circles that are at a certain distance from each other; (3) an arbitrary state in which 

any two of the three circles intersect, with the third circle at a certain distance 

away from the first two intersecting circles because of a radius that is either too 

small or too large; or (4) the three circles are separated either inside or outside of 

each other.  

In situation 1, ECA takes three closest intersection points and obtains the 

average of their coordinates. In situation 2, ECA takes two closest intersection 

points and uses the center point between them as an estimation point. In Situation 

3, ECA adds /2 to the radius of the third smaller circle, or subtracts /2 from 

the radius of the third larger circle before redrawing the circle in the expectation 

that the redrawn circles conform to situation 1. If it cannot, then the remaining 

two circles will be redrawn by expanding or subtracting the radius in the opposite 

direction. If Situation 1 still does not appear after undergoing these procedures, 
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then the situation is beyond the level of precision that the ECA positioning system 

is capable of providing. In this case, the calculated estimation point is 

meaningless. Situation 4 involves adding or subtracting the radius by /3, then 

redrawing the circle to recalculate the coordinates of the intersection points before 

taking the average of the three selected intersection points as their coordinates. 

 

3. Weighted Screening Method 

A study of GPS and positioning using code division multiple access (CDMA) 

[7] showed the major factor influencing the distance between the observation 

point and signal sources was the multi-path effect during non-line-of-sight 

(NLOS) signal transmission, after excluding the variance of instrument accuracy. 

The transmission time under this effect must be longer than that of a line-of-sight 

(LOS) transmission. Therefore, distances calculated by multiplying transmission 

time with the speed of light seem to be overestimated. Meanwhile, for the WiFi-

based trilateration, the signal strength is not only affected by multiple paths in the 

environment, but also by obstacles between AP and observation point. Due to the 

OAF is only an approximately compensator for wireless attenuation model, 

calculations that convert signal strength into distance are also not entirely realistic. 

Consequently, they occasionally generate overestimation or underestimation, and 

the incorrect estimation will affect the calculation of eq. (2) severely. Figure 4 

shows the difference and effect between these two phenomena. In such 

circumstances, the desired estimation points may occur inside the overlapped area 

of the three circles, as shown or in other intersecting areas, as in Fig. 4, where r1 

denotes the distance from observation point to the AP, 1 and 2 are the supposed 

overestimation errors in two individual observations. According to eq. (2), we will 

obtain the estimation points e1 and e2 respectively. Clearly, the matrix method 

used in trilateration is unsuitable in IPS.  

For this reason, this paper uses WSM to identify possible intersection points 

that are close to the target, filter out other points that are further away, average 

closer points to obtain the target position, and find the radius-based weighted 

average point in situations of disjointing circles. Additionally, with other indoor 

non-satellite positioning systems, targeted objects and signal sources are usually 
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assumed to be on a plane. Therefore, a three-AP based plane positioning system is 

suitable for this type of system. 

Let C1, C2, and C3 represent three circles, respectively. If any two of the three 

circles have a non-infinite number of intersections, then the number of all 

intersections of the three circles is between 0 and 6. Let IA1 and IA2 (intersect 

points) represent two points in the intersection between circles C1 and C2; IB1 and 

IB2 represent two points in the intersection between circles C2 and C3; and then IC1 

and IC2 represent two points in the intersection between circles C1 and C3, as 

shown in Fig. 5. We use these intersections to select three closest points IA, IB, and 

IC, and then take their average to estimate the location of the observation points. 

In this case, the treatment in WSM is same as ECA [5]. If only one intersection 

(tangent point) is observed, the result is retained without screening; however, if 

the circles are disjoined, then WSM is used. 

In a disjointed case, the algorithm sets a point on the closest line to the two 

circles as the focal point, of which the ratio of the distance from the edge of the 

two circles is set to the ratio of the two radii. Using Fig. 6 as an example, the two-

circle situation can be divided into outside and inside separation, as shown in Fig. 

6 (a) and 6 (b), respectively. In a situation of outside-separation, as shown in Fig. 

6 (a), if the radius of C1, C2, and C3 are r1, r2, and r3, respectively, then the 

distance ratio from IB to the edge of C1 and C3 is r1: r3. Similarly, the distance 

ratio from IC to the edge of C2 and C3 is r2: r3. The same method of calculation 

also applies to inside-separation as shown in Fig. 6 (b). The idea of this approach 

is because the measurement is theoretically a calculation of distance; the point is 

in close proximity to the edge, rather than to the center of the circle. We use the 

four situations in Fig. 3 to illustrate the screening method. In Situation 1, we 

select the intersection point closest to the edge of the circle by screening out 

points that are further away. In this example, IA1 is screened out, leaving IA = IA2. 

Similarly, IB = IB2 and IC = IC2. The three points obtained are then averaged out to 

obtain the position of the estimated point. Situations 2 to 4 are cases in which two 

of the circles are not intersecting. In such cases, the weighted screening algorithm 

is used to obtain IA, IB, and IC. This method is capable of obtaining a point from 

each of the two circles that are either intersecting fully, tangentially, or not at all. 

Thus, the weighted screening mehtod is absolutely capable of obtaining the 
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positions of IA, IB, and IC, which are then averaged out to obtain the target point of 

trilateration. 

 

4. Experimental Results and Discussion 

The experimental results are divided into two parts: first, we repeated the 

ECA [5] algorithm experiment and used their measured numerical values to 

calculate and compare the performance among the matrix, ECA, and WSM. In the 

second part, we setup a test environment in 5th-floor of Electrical Building, CYCU 

then measure the AP signals from smartphone and calculate the position.  

A. Part I: 

This experiment obtained data from a total of seven measurement points, 

including information on positions and estimated distance from the APs, as listed 

in Table I. The coordinates of the three APs were set to S1 (0, 0), S2 (10, 0), and S3 

(0, 10) in experiments 1 through 4; and S1 (0, 0), S2 (6.21, 0), and S3 (6.21, 6.21) 

in experiments 5 to 7. Table II shows the performance results using various 

methods such as EAC, Matrix, and WSN, where the column  was calculated 

through the average distance error of the experiment, with column 2 representing 

the variance of the error value; 25 %, 50 %, and 75 % of the cumulative distance 

error are expressed in the columns 25th, 50th, and 75th, respectively. Table III 

shows the seven displacement errors calculated from the experiment, which is the 

result of subtracting the estimated coordinates from the coordinates of the original 

observation point. 

The results reveal that regardless of whether calculating an average value or 

error variance, WSN performs better as a method than either ECA or Matrix. We 

plotted the results from the first, fourth, and fifth experiments in Fig. 7, which 

reveals that when the distribution of the coordinates of the three APs used for 

positioning is more uniform (when the center of the circles as endpoints are linked 

into a triangle, the closer the angle is to 60o, the more uniform the AP distribution 

it represents; otherwise, it is less uniform) and the signal strengths are almost the 

same, the positioning results generated by WSN and ECA are very close. 

However, when the three positioning circles differ greatly in size, WSN has better 

precision and robustness as compared to matrix and ECA. In addition, the WSM 

is a light-weight position algorithm that consumes less computational resource 
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than matrix and ECA. It also suit for the case of irregular deployed position of 

APs in a building and suit for the case of irregular RSSI variation.  

 

B. Part II: 

Fig. 8 shows the experiment setup. There are 3 APs, 5 calibration points and 

one measurement point. We are intending to determine the position of the 

measurement point by the WiFi signals from APs and the calibrating data from 

the other 5 calibration points, which are collected beforehand. The AP1 and AP2 

is “Dlink DIR-300 Wireless-G” wireless router, AP3 is “ASUS WL-330gE” 

portable wireless router. All calibration points, named c1 to c5, and the 

measurement point, named p1, are in corridor. In Fig. 8, AP1 is in a room so that 

it is walled off from the measurement points. Table IV listed the received RSSI of 

these points. The device used to collection those signal is HTC one X, an android-

based smartphone. 

There are two interesting problems that cause error when applying RF 

propagation model in positioning: the first is that not all APs emit same power. 

Via actual measurement, we detected -32dBm and -36 dBm for AP1 and AP3 

from 1 meter distance, respectively. The second is that not all mobile devices have 

same resolution in detecting radio signal. In general, general purpose smartphone 

and laptop report RSSI in one dBm scale and different devices report different 

RSSI values very frequent on the condition of same place and same time. In the 

proposed system, the change of P(d0), n from any situation and the value of OAF 

in equation (3) are all integrated into CF (Calibration Factor). So the propagation 

model for in-door WiFi-based positioning system becomes 

 
CF

d

d
PdP n

ref  )log(10)(
0  (4) 

In system calibration phase, it can adjust CF to enhance the accuracy. Pref is a 

referenced power level instead of P(d0), and is assumed to be -32dBm and n is 

assumed to be 2.7 in this study. 

Fig 9(a) shows the case of CF setting to be 15 for all APs. In this case, we 

find the radius of the circle with the center of AP1 is properly calibrated by the 

CF. However; the WiFi signal from AP2 to the p1 is in the line-of-sight path, so 

the radius of the circle with the center of AP2 is underestimated. The WiFi signal 

from AP3 to the p1 is in the non-line-of-sight path. Besides, the AP3 emits lower 
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power than AP1 and AP2. The radius of the circle with the center of AP3 is much 

overestimated. Due to the erring estimation for the radiuses, the WSM screens 

wrong intersections and then reports an estimated point with large error.  

Fig 9(b) shows the case of CF setting to be 35 for all APs. We find that all 

radiuses are underestimated and the estimated point converges to a certain point 

for both WSM and matrix when CF approaches to a sufficient large value. Fig 9 

(c) shows the estimation error of WSM and matrix method when calculating the 

distances from APs to the measurement point by applying same CF to all received 

WiFi signals.  

From the discussion above, we know that applying same CF to all received 

WiFi signal to estimate the user position is misfit. Therefore a calibration phase is 

needed before user position estimation. We propose a simple and efficient 

procedure to obtain the CF for each received WiFi signal. The procedure is stated 

as follows: 

I. Calibration phase: 

i. Choose several calibration points which position is given beforehand 

according the spacial characteristic of the building to collect the 

wireless channel characteristics. In this experiment, 5 calibration 

points was chosen and shown on Fig. 8. 

ii. Because of the position of the calibration points are given 

beforehand, the distance from the APs to the calibration points is 

also known and the CF for different APs can be calculated in this 

stage. The result is also tabulated on Table IV. 

II. Positioning phase: 

i. When a signal receiver, a smartphone in this experiment, receives 

WiFi signals, if the strongest RSSI is larger than -50dBm, it means 

that the measurement point is very close to an AP, (less than 2 

meters). Therefore the proximity method can be used in this case and 

let the AP’s position be the approximated position of the 

measurement.  

ii. According to the order of RSSI strength, find the candidates from the 

calibration points. In this experiment, c1 and c2 is the candidate. 
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iii. Find the one in the candidates whose strongest RSSI is the most 

close to the strongest RSSI of the measurement point. In this 

experiment, it is c1. 

iv. Adopt the CF values of the calibration point to be the CF values of 

the measurement point and then performs the WSM to obtain the 

position of the user. 

Assisting with the calibration points, the estimation error is down to 1.73 m. 

The result is shown in Fig. 10. Meanwhile, follows the same procedure and 

assisting with the calibration points, the matrix method still has the estimation 

error of 4.98 m.  

 

5. Conclusions 

This study briefly explains a planar indoor positioning system based on WiFi 

signals, and proposed the use of WSN to improve the positioning estimation error 

by comparing the proposed method with matrix and ECA. The experimental 

results show that the WSM delivers the best performance, with an average error 

and sampling point topology of the same regularity being 1.988 m and 2.491 m, 

respectively; the error variance is further reduced by 2.067. The results show that 

relative to the ECA and matrix method, the WSM can reduce more errors, 

allowing a WiFi-based indoor positioning system to achieve even greater 

accuracy. 
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Figure 1. Trilateration 
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Figure 2. DOP diagram, (a) is better than (b) with lower DOP 
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Figure 3. Four intersecting situations for the three circles as proposed in the ECA 

study 
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Figure 4. Three circles diagram shows the overlap of three circles 

and the selected estimation points using matrix method with 

distance overestimation of r1 
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Figure 5. Intersection screening method 
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(b) 

Figure 6. Weighted intersection screening method, (a) outside separation, (b) 

inside separation 
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(a) Experimental case 1 

 

(b) Experimental case 4 

 

(c) Experimental case 5 

Figure 7. Results from Experiment 1, 4, and 5 
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Figure 8. Experiments setup in 5th-floor, Electrical Building 

CYCU. 
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(a) 

 

(b) 

 

(c) 

Figure 9. Estimation result for treating all received WiFi signal 

with same channel characteristic. (a) small CF case, (b) large CF 

case, (c) estimation error for different CF 
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Figure 10. Estimation result for the measurement point p1 

-10 0 10 20 30 40 50 60 70 80
-40

-30

-20

-10

0

10

20

30

40

x (m)

y
 (

m
)

 

 

AP

p1

WSM

Matrix



23 

 

Table I 

ESTIMATED DISTANCE BETWEEN THE ACTUAL LOCATION OF THE OBSERVATION 

POINTS AND APS FROM THE SEVEN EXPERIMENTS 

Experiment Coordinates Estimated distance from AP (m) 

x y S1 (0, 0) S2 (10, 0) S3 (0, 10) 

1 10 10 12.52 9.36 9.51 

2 -1 -3 2.438 8.872 14.29 

3 4.45 -2.28 3.76 5.15 14.683 

4 12 10 18.5 7 7 

5 2 0 1.72 4.54 11.99 

6 3.5 2.8 4.36 3.68 5.83 

7 -0.5 6.21 6.98 9.43 8.04 

 

Table II 

Comparison table relative to weighted screening method and error correction 

algorithm  

Method  (m) 2 25th (m) 50th (m) 75th (m) 

WSN 1.988 2.296 1.076 1.366 2.193 

ECA 2.491 4.363 1.053 1.370 3.572 

Matrix 4.262 16.156 1.583 2.794 5.873 

 

Table III 

Displacement errors between the actual locations from the weighted screening 

method and the error correction algorithm from the seven experiments 

Experiment WSN ECA Matrix 

x y x y x y 

1 -0.88 -1.04 -0.88 -1.05 -1.54 -1.71 

2 2.17 0.047 2.75 -0.08 2.36 -1.91 

3 -1.01 -0.16 0.18 -0.97 -0.07 -2.79 

4 -4.53 -2.53 -4.60 4.60 7.66 9.66 

5 0.18 -2.19 -1.11 -3.68 -0.32 -6.81 

6 0.06 -1.23 0.06 -1.24 0.05 -1.34 

7 -0.73 0.05 -0.73 0.05 0.37 -1.15 
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Table IV 

Received RSSIs and the calculated CFs of c1 to c5 in Fig. 8 

point 
Coordinates RSSI (dBm) CF (calculated) 

x y AP1 AP2 AP3 AP1 AP2 AP3 

p1 7.4 1.35 -73 -78 -94    

c1 9.68 1.35 -69 -76 -92 14.51 4.03 26.36 

c2 19.36 1.35 -60 -75 -76 11.62 7.55 16.40 

c3 23.8 6.78 -87 -79 -69 26.92 13.47 21.64 

c4 30.2 1.35 -77 -68 -86 13.78 9.27 26.46 

c5 39.88 1.35 -83 -40 -90 13.77 4.48 24.42 

 

 

 

 

 


