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Abstract–We propose a new multirate teletraffic loss model for the calculation of time and call 
congestion probabilities in CDMA-based networks that accommodate calls of different service-
classes whose arrival follows a batched Poisson process. The latter is more “peaked” and 
“bursty” than the ordinary Poisson process. The acceptance of calls in the system is based on the 
partial batch blocking discipline. This policy accepts a part of the batch (one or more calls) and 
discards the rest if the available resources are not enough to accept the whole batch. The 
proposed model takes into account the multiple access interference, the notion of local (soft) 
blocking, user’s activity and the interference cancellation.  Although the analysis of the model 
does not lead to a product form solution of the steady state probabilities, we show that the 
calculation of the call-level performance metrics, time and call congestion probabilities, can be 
based on approximate but recursive formulas. The accuracy of the proposed formulas are 
verified through simulation and found to be quite satisfactory. 
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1. Introduction 

The CDMA (Code-Division Multiple Access) is a family of channel access techniques 

used by various radio communication technologies [1]. For example the 

Wideband CDMA (W-CDMA) and the Time Division CDMA are used in the third generation 

(3G) mobile technology standards (UMTS, CDMA2000) [2]. Furthermore, schemes such as 

the Multi-Carrier CDMA [3] and the Large Area Synchronised CDMA [4] have been 

considered by some of the fourth generation (4G) networks [5], [6]. CDMA-based networks 

are known for efficient frequency spectrum utilization, good signal quality, and enhanced 

security, just to name a few. Recently there started some efforts in developing concepts for 

future fifth generation (5G) networks. Some of them envision CDMA 

technology as a key multiple access method [7]. While nothing is clear 

yet with regard to the future 5G networks, it's very likely that they would 

integrate different current existing and future wireless network technologies (including 

CDMA-based) to ensure seamless roaming between various technology standards. 

 

 



CDMA networks are an exemplary case where call admission control is subject to the 

levels of the interference experienced from the Base Station in the air medium. In the uplink 

direction, users belonging to a cell are not only sharing the same bandwidth spectrum among 

them, but also with users of the neighboring cells. Such interference based networks 

implement different call admission control policies with respect to traditional wire networks 

that take into account the aforementioned multiple access interference. The application of 

traditional performance analysis methods is therefore challenging and necessitates adaptation, 

especially when the heterogeneous nature of the traffic is considered.  

 Herein, we consider a CDMA reference cell that supports calls from K different service-

classes and examine the uplink direction (from a mobile user to the base station that controls 

the cell). The reference cell is modeled as a multirate loss system whose capacity consists of a 

fixed and integer number of channels. Similarly, the radio resource requirements of each call 

correspond to an integer number of channels. A new service-class k (k=1,…,K) call is 

accepted in the cell if the requested number of channels is available. More precisely, the 

admission of a new call is based on the estimation of the total interference increase (own-cell 

and other-cell interference plus thermal noise) caused by the new call’s acceptance. An 

accepted call remains in the system for an exponentially distributed service time. Due to the 

existence of interferences, soft or local blocking occurs. That is, a new call can be blocked 

and lost in any system state if its acceptance increases the experienced noise of all in-service 

calls above a tolerable level, given that, according to the CDMA principle, a call is noise for 

all other calls. This call admission policy corresponds to the complete sharing (CS) policy in 

wire networks, whereby all calls compete for all bandwidth resources [8]. 

The previous model of a CDMA cell has been adopted in [9]-[12]. In these papers, the 

formulas proposed for the calculation of call blocking probabilities (CBP) in the cell, 

resemble the classical Kaufman-Roberts formula used for the CBP calculation in the Erlang 

Multirate Loss Model (EMLM). The EMLM refers to a single link of certain capacity that 

accommodates, under the CS policy, Poisson arriving calls of different service-classes with 

different bandwidth requirements and generally distributed service times [13], [14]. More 

precisely, in [9] and [11] an extension of the EMLM is considered which is based on the 

Delbrouck’s model [15]. The latter generalizes the EMLM since it allows the call-arrival 

process to have different peakedness factors 1. In [10], calls arrive in the cell according to a 

Poisson process. In [12], calls come from a finite number of sources, a case that can be 

realistic especially in cells that have a limited coverage area. Apart from the different call 

arrival processes considered in [9]-[12], there is also another difference in the way the notion 

of local blocking is modelled. In [9] (also adopted in [11]), this modelling is more 

complicated compared to the one proposed in [10] (also adopted in [12]). In subsection 3.2, 

we compare the two approaches and adopt the model of [10] as it is more realistic for CDMA-

based systems.    

                                                 
1 The peakedness factor z is the ratio of the variance over the mean of the number of arrivals; if z=1, the 
arrival process is Poisson; if z<1, the arrival process is quasi-random; if z>1, the process is more 
peaked and bursty than Poisson (e.g. overflow traffic). 



In this paper, we consider the abovementioned model of a CDMA reference cell and 

analyze the case of batched Poisson call arrivals. In a batched Poisson arrival process, which 

is more bursty than a Poisson process, batches of calls occur at time-points which follow the 

negative exponential distribution. New calls are accepted in the cell according to the partial 

batch blocking discipline. The latter assumes that a part of the entire batch (one or more calls) 

can be accepted in the cell while the rest of it is discarded, when the available resources are 

not enough to accommodate the entire batch. As far as the distribution of the batch size is 

concerned, we consider a general distribution. In the case of the geometric batch size 

distribution (a memoryless distribution and a discrete equivalent of the exponential 

distribution), the proposed model coincides with the model of [9], [11]. The steady-state 

probabilities in the proposed model do not have a product form solution. However, we 

propose approximate but recursive formulas for the calculation of time and call congestion 

probabilities (TC and CC probabilities, respectively). The analytical results are verified by 

simulation and found to be absolutely satisfactory.  Note at this point that TC probabilities are 

determined by the proportion of time the system is congested. An observer, who is not part of 

the system, can measure this probability. On the other hand, CC probabilities are determined 

by the proportion of arriving calls that find the system congested. An observer who is part of 

the system (i.e. an arriving call) can measure this probability. These probabilities coincide in 

the case of Poisson arrivals due to the Poisson Arrivals See Time Averages (PASTA) 

property [8]. In the case of a batched Poisson process, CC probabilities are higher than TC 

probabilities.   

To the best of our knowledge, a call-level analysis in CDMA networks under a batched 

Poisson process has not been considered before. On the other hand, many papers study this 

arrival process (at call level) in wired networks (see e.g., [16]-[20]). In [16], the EMLM is 

extended to include a batched Poisson process under the geometric batch size distribution and 

the partial batch blocking discipline. In [17], a general batch size distribution is considered. 

Herein, we name the model of [17], Batch Poisson EMLM (BP-EMLM). In [18], the BP-

EMLM is extended to include the bandwidth reservation policy. In this policy, a part of the 

available bandwidth is reserved to benefit calls with high bandwidth requirements. In [19]-

[20], the BP-EMLM is extended to include the case where in-service calls can compress their 

bandwidth during their lifetime in the system. In the proposed model, we assume that in-

service calls do not compress their bandwidth.  

In addition to the batched Poisson process, we study the effect of interference cancellation 

on TC and CC probabilities. Interference cancellation receivers reduce only the own-cell 

interference and not the other-cell interference or the thermal noise [21]. This reduction 

results in the decrease of TC and CC probabilities in the proposed model. Note that the 

introduction of the interference cancellation in the call-level modelling of CDMA networks 

has been considered only in [12], where calls come from a finite number of sources.        

This paper is organized as follows: In section 2, we present the basic relations in the uplink 

direction of a CDMA reference cell. In subsection 2.1, we review the relations for the total 

received power of a service-class k call with or without the existence of interference 

cancellation. In subsection 2.2, we propose a formula for the determination of the maximum 



number of service-class k calls in the cell under the existence of interference cancellation. In 

subsection 2.3, we calculate the uplink capacity and the bandwidth requirement of service-

class k calls. In section 3, we consider the case of Poisson arrivals and calculate CBP in the 

case of hard blocking2 only (subsection 3.1) and when hard and soft blocking co-exist 

(subsection 3.2). In section 4, we consider the case of batched Poisson arrivals and calculate 

TC and CC probabilities in the case of hard blocking only (subsection 4.1) and when hard and 

soft blocking co-exist (subsection 4.2).  In both subsections 3.2 and 4.2 we also consider the 

case of interference cancellation. In section 5, we present numerical results and evaluate the 

proposed formulas by comparing analytical with simulation results. We conclude in section 6. 

In the Appendix, we provide the proof for the formula of the maximum number of service-

class k calls in the cell under the existence of interference cancellation. 

 

2.  Basic relations in the uplink direction of a CDMA reference cell 

2.1. Determination of the total received power of a service-class k call 
Consider a CDMA reference cell controlled by a base station and surrounded by other 

neighbouring cells. In the reference cell, we examine the uplink direction and model the 

reference cell as a multirate loss model. The cell accommodates calls of K different service-

classes. A service-class k call (k=1,…,K) alternates between periods of transmission (active 

periods) and periods of non-transmission (passive periods). The ratio of “active periods” over 

“active + passive periods” is the activity factor of a service-class k call, vk, where vk 1 . 

Typical values of vk, for dimensioning purposes, are: vk =1.0 if k is a data service-class and vk 

=0.67 if k is a voice service-class (see pp. 187, Table 8.9 in [2]).  

In CDMA systems, all users transmit within the same frequency band which means that a 

single user “sees” the signals generated by all other users as interference. In that case, the 

base station’s capacity in the CDMA reference cell is limited by the so called Multiple Access 

Interference (MAI) [2]. The latter consists of two types of interference: 1) the own-cell 

interference, Pown, which is caused by the mobile users of the reference cell and 2) the other-

cell interference, Pother, which refers to the interference power received from the mobile users 

of the neighbouring cells. Since the MAI has a stochastic nature, we speak about the soft 

capacity (or the interference limited capacity) of the radio interface (see also pp. 225 in [22]).  

Apart from Pown and Pother we take into account the existence of thermal noise, Pnoise, which 

corresponds to the interference of an empty CDMA system. A typical value of the thermal 

noise power density, in W-CDMA systems, is 174 dBm/Hz (see pp. 178 in [2]).   

The values of Pown can be reduced by the so called interference cancellation; the latter is 

not effective towards Pother and Pnoise. The interference cancellation efficiency is denoted by β 

and defined by the ratio [21]: 

(1 )
NO IC

NO ICown own
own ownNO IC

own

P P
P P

P
 
                                                                                          (1) 

                                                 
2 Hard blocking occurs when the bandwidth requirement of a new call is higher than the available 
resources of the system. This type of blocking appears in wired networks. 



where NO IC
ownP is the own-cell interference without interference cancellation. In what follows, 

we assume that β is constant ( 0 1  ) and common to all service-classes while it is 

independent of the specific receiver implementation and radio link conditions ([21], [23]).  

Due to the existence of interference cancellation, and by denoting as pk the total received 

power from a service-class k user, we can write the power control equation for service-class k 

as follows [21]: 

0 ( )(1 )
b k

k
own k other noisek

E p
G

N P p P P
 

      
                                                                                (2) 

where 
0

b

k

E
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 
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 

is the signal energy per bit divided by the noise spectral density, required to 

meet a predefined Block Error Rate, k
k k

W
G

v R
 is the processing gain of service-class k in the 

uplink direction with user activity factor vk, data rate Rk and W the chip rate of 3840 kcps (in 

W-CDMA systems).  

Based on eq. (2), the values of pk can be obtained by:  
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                                   (3) 

Note 1:  

If β=0 (i.e., interference cancellation is not considered) then eq. (2) and eq. (3) result in (see 

also pp. 181 in [2], eqs (8.4) and (8.5), respectively):   
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where Ptotal = own other noiseP P P   is the total received power at the base station. 

 
 
 
 
 
 
 
 
 
 
 



2.2. Determination of the maximum number of service-class k calls in the cell 
Let Nk be the maximum number of service-class k calls in the cell. Assuming that 

Pown=pkNk, we can calculate Pown, via eq. (3), as a function of Nk 
3:  
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(1 ) (1 )

k other noise
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                                                                                             (6) 

Consider now the Noise Rise (NR) which is defined as the ratio of the total received power 

at the base station to the thermal noise power (see also pp. 227 in [22]):  

total own other noise

noise noise

P P P P
NR

P P

 
                                                                                                    (7) 

The NR is related to the total uplink cell load, UL , according to the formula (see also pp. 182, 
eq. (8.9) in [2]): 

1

1 UL

NR





                                                                                                                              (8) 

where: UL is defined as the ratio of the received power from all active users to the total 

received power, i.e., own other
UL

total

P P

P
 

 .  

Based on eqs. (7) and (8) we have: 
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1
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                                                                                                        (9) 

Substituting eq. (6) in eq. (9) and solving for Nk we have (see Appendix for the proof): 
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where other

noise

P

P
  . 

If β=0 (interference cancellation is not applied) and δ=0 (which means that Pother = 0), then eq. 

(10) takes the form: 

                                                 
3 If we assume the existence of perfect power control and the same
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, data rate R, activity factor v and 

consequently processing gain G and total received power p for all service-classes then eq. (6) takes the form 
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 where N is the total number of users in the reference cell.                                                         
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which is eq. (3) of [11] and shows the maximum number of service-class k calls in an isolated 
cell. 

 

Note 2: 

If we assume the existence of perfect power control and the same
0

bE

N

 
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 

, data rate R, activity 

factor v and consequently processing gain G and total received power p for all service-classes 

then eq. (10) takes the form:  
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where other

noise

P

P
  and N is the total number of users in the reference cell. 

Now: 
1) if β = 0 then eq. (12) becomes: 
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Equation (13) is exactly the same with eq. (8.12) of [2], if we prove that: 
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The proof requires some calculations but it is trivial and thus is omitted. 
 
2) if β>0, eq. (12) gives the same results with eq. (8) of [21]. To prove it, we should show that 

the ratio 
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of eq. (12) is the same with the ratio 
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 of eq. (8) of 
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P
 . Based on eq. (14), it is easy to show that these ratios are equal. 

 
2.3. Determination of the uplink capacity and the bandwidth requirement of service-
class k calls 

Having determined Nk according to the proposed eq. (10), we continue by calculating the 

spread data rate Rs,k of service-class k, as the proportion of W which is utilised by a call of 

service-class k:  



,s k
k

W
R

N
                                                                                                                                  (15) 

 Now, we transform the chip rate W to the uplink capacity C, and the spread data rate Rs,k 

to the corresponding bandwidth requirement per call, bk, of each service-class k. To achieve 

this, we define a basic bandwidth unit (bbu). This bbu can be determined as the greatest 

common divisor of the required call resources of all service-classes, or it can take an 

arbitrarily chosen small value. As an example, if bbu = 20 Kcps (arbitrarily chosen), then C 

and bk are given by: 

192
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Consider now an example of K=4 service-classes accommodated in a W-CDMA cell. In 

Table I, we present the results of Nk and Rs,k, for UL =0.5 and i=0.55, when the calculation of 

Nk is based either on eq. (10) or eq. (11). Equation (11), which does not take into account the 

other-cell interference, overestimates the maximum number of service-class k calls in the cell, 

compared to the results of the proposed eq. (10). On the other hand, the results of eq. (10) 

show that the increase of the interference cancellation efficiency β (from 0.5 to 0.8), leads to 

the increase of Nk as expected.  

  
Table I: Maximum number of calls and corresponding spread data rate when UL =0.5, i=0.55, δ=0.5 

(when β > 0) and various values of the IC efficiency β. 
 

     β=0, δ=0 
[10]-[11] 

β=0.2 
(proposed) 
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(proposed) 
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(eq. 11) 
Rs,k 

(eq. 15) 
Nk 

(eq. 10)
Rs,k 

(eq. 15) 
Nk 

(eq. 10) 
Rs,k 

(eq. 15) 
Nk 

(eq. 10) 
Rs,k 

(eq. 15) 

1 7.95 0.67 4.0 2.51 144 26.67 75.7 50.70 82.1 46.75 89.7 42.78 
2 7.95 0.67 7.0 5.01 72.4 53.02 38.1 100.88 41.2 93.11 45.0 85.31 
3 32 1.0 3.0 2.00 30.6 125.61 16.0 239.44 17.3 221.63 18.9 203.64 
4 64 1.0 2.0 1.58 19.4 197.65 10.2 377.47 10.9 350.39 11.9 322.88 

 
 
 
3. Call blocking probabilities assuming Poisson arrivals  
3.1. A system with hard blocking only 

In connection-oriented systems, every system state j (j=0, 1,…, C) can be a non-blocking 

or a blocking state for service-class k calls, depending on the bandwidth requirement bk. 

Assuming Poisson arriving calls, exponentially distributed service times and the CS 

bandwidth allocation policy, then the EMLM results. In the EMLM, the un-normalized values 

of the system state probabilities, q(j), can be determined by the following accurate and 

recursive formula, known in the literature as Kaufman-Roberts formula (or recursion) [13], 

[14]: 

1
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1
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where αk = λk/μk is the offered traffic-load of service-class k calls (in erl) while λk and μk are 

the mean arrival and service rate of service-class k calls, respectively. 

The calculation of TC probabilities of service-class k,
kbP , is based on the following 

formula: 
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where 
0

( )
C

j

G q j


  is the normalization constant.  

Note that in the case of Poisson traffic, TC probabilities coincide with CC probabilities due to 

PASTA [8], [24]. 

 
 
3.2. A system with both hard and soft blocking 

In CDMA networks we distinguish two types of states j: a) those states that are certainly 

blocking states for service-class k calls (hard blocking states) and b) those states that are 

blocking states for service-class k calls with a probability ,0 1j kL  (soft or local blocking 

states) due to the stochastic nature of the other-cell interference. In what follows, we show 

how we can incorporate the notion of local (or soft) blocking in eq. (17). 

To consider in the reference cell the other-cell interference, we approximate it by an 

independent, lognormally distributed random variable with parameters μ and σ, given by:   

,
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                                                                  (19) 

Note that the parameter μ is chosen to be equal to σ as proposed in the literature (e.g., [9]-

[12], [25]-[26]). The value of μ expresses the average capacity that is lost from the reference 

cell due to the other-cell interference and noise.  

If the thermal noise Pnoise is not considered, then eq. (19) takes the form (see also eq. (27) 

in [11]): 
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                                                                                             (20) 

The local blocking probability in state j, denoted as jL , expresses the probability that the 

other-cell interference is greater than the available capacity (C-j) of the reference cell and is 

independent of the bandwidth requirement of service-class k calls [9]: 

   ' '1

1 ( )

j

j

L P j C j P j C j

L CDF C j

       

  
                                                                                  (21) 

where j′ denotes the occupied channels due to the other cell interference and CDF(x) is the 

cumulative distribution function of the lognormal distribution. 

The values of CDF(x) can be determined by: 



1 ln( )
( ) 1

2 2

x M
CDF x erf

S

     
  

                                                                                            (22) 

where erf is the error function, while M and S refer to the parameters of the normal 

distribution and are given by: 

2

2 2
lnM


 

 
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  

                                                                                                                 (23) 
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                                                                                                                      (24) 

Consider now a new service-class k call which requires bk channels in order to be accepted 

in the cell. We can express the passage factor ,1
kj bL , i.e., the probability that the call will not 

be blocked due to the other-cell interference, as a function of the number of channels 

occupied in the cell and the bandwidth requirement bk [9], [11]: 

1

, 1 2 11 (1 ) (1 )(1 )(1 )...(1 )
k

k k

j b

j b x j j j j b
x j

L L L L L L
 

   


                                                             (25) 

Note that the right hand side of eq. (25) consists of bk terms of the form (1 )xL . This means 

that every time a service-class k call obtains one channel, the value of the local blocking 

probability changes (e.g., if in state x, the value of 1-Lx becomes 1-Lx+1 etc.) and the call is 

finally accepted in the cell if all bk channels are assigned to the call.    

In [10], a different and less complicated approach is proposed. A new service-class k call 

will be accepted in the cell if all bk channels are assigned to the call simultaneously. This 

means, that the other-cell interference (and consequently the local blocking probability) 

remains the same during the allocation process of these bk channels. In that case, the passage 

factor ,1
kj bL is equal to the last term of eq. (25), i.e.,:  

, 11 (1 )
k kj b j bL L                                                                                                                     (26) 

Herein we adopt the approach of [10] as it is more realistic for the call admission control of 

CDMA systems.  

 Due to the introduction of the passage factor according to eq. (26), the transition rate from 

state (j-bk) to state j, equals    , 11 1
k kj b b k j kL L     . Figure 1 presents the system’s state 

transition diagram which is depicted by a one-dimensional Markov chain. Note that ( )ky j  
denotes the average number of service-class k calls in state j. 

 
Figure 1: State transition diagram of Poisson service-class k calls with local blocking between states 

j-bk and j.  

0 j-bk

 11 j kL   

j C 

( )k ky j 



 

The un-normalized values of the system state probabilities, q(j), are given by the following 

approximate but recursive formula [10]: 

,
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                                                             (27) 

where: αk = λk/μk is the offered traffic-load of service-class k calls (in erl) and the values of 

 ,1
k kj b bL   are given by eq. (26). 

The determination of TC probabilities of service-class k,
kbP , is based on the formula [10]: 

1
,

0

( )
k k

C

b j j b
j

P G L q j




                                                                                                                (28) 

where 
0

( )
C

j

G q j


  is the normalization constant.  

To summarize the differences between [9] (or [11]), [10] and the proposed method, we 

present in Table II the algorithmic steps for the calculation of TC probabilities in each case. 

 
Table II: Algorithms for the calculation of TC probabilities in the case of Poisson traffic. 

 

Consider again the example of the four service-classes presented in section 2.3. All calls 

arrive in the cell according to a Poisson process and have an exponentially distributed service 

time. The offered traffic-loads of all service classes are: α1= 8.0 erl, α2= 4.0 erl, α3= 0.5 erl 

and α4= 1.0 erl. Assuming now that the bbu = 13.5 Kcps we obtain the values of C and bk 

(k=1,…,4): 

a) Based on the 7th column of Table I (β=δ=0): C=284, b1=2, b2=4, b3=10 and b4=15 channels. 

These values will be used for the calculation of TC probabilities in the case of [9] (or [11]) 

and [10].   

b) Based on the 9th column of Table I (β=0.2, δ=0.5): C=284, b1=4, b2=8, b3=18 and b4=28 

channels.  

c) Based on the 11th column of Table I (β=0.5, δ=0.5): C=284, b1=4, b2=7, b3=17 and b4=26 

channels. 

Algorithm for the calculation of TC 

probabilities based on [9], [11] 

Algorithm for the calculation of TC 

probabilities based on [10] 

Proposed algorithm for the calculation 

of TC probabilities 

1) Determine Nk (eq. (11)) 1) Determine Nk (eq. (11)) 1) Determine Nk (eq. (10)) 

2) Determine Rs,k (eq. (15)) 2) Determine Rs,k (eq. (15)) 2) Determine Rs,k (eq. (15)) 

3) Determine C, bk (eq. (16)) 3) Determine C, bk (eq. (16)) 3) Determine C, bk (eq. (16)) 

4) Determine μ, σ (eq. (20)) 4) Determine μ, σ (eq. (20)) 4) Determine μ, σ (eq. (19)) 

5) Determine Lj (eqs. (21-24)) 5) Determine Lj (eqs. (21-24)) 5) Determine Lj (eqs. (21-24)) 

6) Determine 1-Lj,bk
 (eq. (25)) 6) Determine 1-Lj,bk

 (eq. (26)) 6) Determine 1-Lj,bk
 (eq. (26)) 

7) Determine q(j) (eq. (27)) 7) Determine q(j) (eq. (27)) 7) Determine q(j) (eq. (27)) 

8) Determine Pbk 
(eq. 28)) 8) Determine Pbk 

(eq. 28)) 8) Determine Pbk 
(eq. 28)) 



d) Based on the 13th column of Table I (β=0.8, δ=0.5): C=284, b1=4, b2=7, b3=16 and b4=24 

channels.  

The values of (b), (c) and (d) will be used for the calculation of TC probabilities in the case of 

the proposed algorithm. 

In the x-axis of Figs. 2-7, α1, α2, α3 and α4 increase in steps of 2.0, 1.0, 0.5 and 0.25 erl, 

respectively.  So, in Point 1 we have: (α1, α2, α3, α4) = (8.0, 4.0, 0.5, 1.0), while in Point 13 

(α1, α2, α3, α4) = (32.0, 16.0, 6.5, 4.0). In Figs. 2-3, we present the TC probabilities of all 

service-classes following [9] (or [11]) and [10], respectively. The results show that the 

approach of [9] (whereby a service-class k call obtains one channel at a time up to bk 

channels) gives much higher TC probabilities compared to the more realistic approach of [10] 

(a service-class k call obtains all bk channels simultaneously). In Figs. 4-7, we adopt the 

approach of [10] for the calculation of the passage factors, consider three values of the 

interference cancellation efficiency β=0.2, 0.5, 0.8 and show the TC probabilities for each 

service-class, respectively. The TC probabilities obtained by the proposed algorithm cannot 

be approximated by [9], [10] or [11], since a different approach is followed for the calculation 

of Nk’s, μ and σ. In addition, the increase of the interference cancellation efficiency results in 

the decrease of TC probabilities as expected.   

 
Figure 2: TC probabilities of all service-classes according to [9]-[11] (interference 

cancellation is not included). 



 

Figure 3: TC probabilities of all service-classes according to [10] (interference cancellation is 

not included). 

 

 

Figure 4: TC probabilities of the 1st service-class for three different values of the interference 

cancellation efficiency. 

 



 
Figure 5: TC probabilities of the 2nd service-class for three different values of the interference 

cancellation efficiency. 

 
Figure 6: TC probabilities of the 3rd service-class for three different values of the interference 

cancellation efficiency. 

 



 
Figure 7: TC probabilities of the 4th service-class for three different values of the interference 

cancellation efficiency. 

 

4. Congestion probabilities assuming batched Poisson arrivals  

4.1. A system with hard blocking only 

Consider a system of capacity C channels that accommodates calls of K different service-

classes. Calls of each service-class k (k=1,…,K) arrive in the system according to a batched 

Poisson process with arrival rate λk and batch size distribution ( )k
mB , where ( )k

mB denotes the 

probability that an arriving batch contains m calls of service-class k. Each service-class k call 

has a bandwidth requirement of bk channels and an exponentially distributed service time with 

mean 1
k
 . Assuming the partial batch blocking discipline for the call admission control the 

BP-EMLM results [17]. Based on [17], the un-normalized values of the system state 

probabilities, q(j), are determined by the following accurate and recursive formula:  
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for j
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                                                                 (29) 

where: αk = λk/μk (in erl),  kbj  is the largest integer less than or equal to j/bk and  ˆ k
lB  is the 

complementary batch size distribution given by  ˆ k
lB =  

1

k
m

m l

B


 
 .   

Note that if  k
mB =1 for m=1 and  k

mB = 0 for m > 1 the arrival process is Poisson and the 

EMLM results. In that case, q(j)’s are given by the Kaufman-Roberts recursion (eq. 17).  

A highly used batch size distribution is the geometric distribution which is memoryless 

and a district equivalent of the exponential distribution. In that case, if service-class k calls 



arrive in batches of size sk where sk is determined by the geometric distribution with parameter 

γk, i.e.,   1(1 ) , 1r
k k kPr s r r      , then the model of [17] coincides with the model 

proposed by Delbrouck in [15], as shown in both [16], [17]. More precisely, since   1
1

ˆ k l
l kB  
  , 

eq. (29) becomes:   
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Based on eq. (29) we can calculate:  

a)  The average number of service-class k calls when the system state is j, ( )ky j :  

 
/

1
1

ˆ( ) = ( ) ( )
kj b

k
k k l k

l

y j α B q j lb q j
  




                                                                                             (31) 

b) The average number of service-class k calls in the system, kn :  

1

1

( ) ( )
C

-
k k

j

n G y j q j


                                          (32) 

c) The CC probabilities of service-class k calls, Cbk
:  

  kkkkkb BαnBαC
k

ˆˆ                                                                                                        (33) 

where: kB̂ is the average batch size of service-class k batches and is determined by: kB̂ = 

 

1

k
m

m

mB



 . 

Note that in the case of the geometric batch size distribution with parameter γk we have: kB̂ = 

1

1 k
. 

d) The TC probabilities of service-class k calls, Pbk
, according to eq. (18).  

 

4.2. A system with both hard and soft blocking 
To introduce the notion of local blocking in the BP-EMLM of [17] we adopt the approach 

of [10]. Due to the batched Poisson process and the introduction of passage factors according 

to eq. (26), the transition rate from state (j-lbk) to state j, equals 

       
, -1 1 -1

ˆ ˆ1 1
k k

k k
j b b k l j k lL B L B     , where l=1, 2,…, / kj b   . Figure 8 presents the 

corresponding system’s state transition diagram, depicted as a one-dimensional Markov 

chain. Note that ( )ky j  denotes the average number of service-class k calls in state j. 

 



 
Figure 8: State transition diagram of batched Poisson service-class k calls with local blocking 

between states  j-lbk and j.  

 

As an example, if j=4 and bk=1 then l=1, …, 4 and the passage factors (towards state j=4) are 

the following: a)    
3 0

ˆ1 k
kL B  from state j=3 to j=4, b)    

3 1
ˆ1 k

kL B  from state j=2 to j=4, c) 

   
3 2

ˆ1 k
kL B  from state j=1 to j=4 and d)    

3 3
ˆ1 k

kL B  from state j=0 to j=4. 

To calculate the un-normalized system state probabilities, q(j), in a CDMA cell which 

accommodates batched Poisson calls of K different service-classes under the partial batch 

blocking discipline, we propose the following approximate but recursive formula:  
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where: αk = λk/μk (in erl),  kbj  is the largest integer less than or equal to j/bk ,  ˆ k
lB  is the 

complementary batch size distribution given by  ˆ k
lB =  

1

k
m

m l

B


 
 and    , 11 1

k kj b b jL L    .   

Note that if  k
mB =1 for m=1 and  k

mB = 0 for m > 1 then the arrival process is Poisson and q(j)’s 

are given by eq. (27).  

In the case of the geometric batch distribution with parameter γk, eq. (34) takes the form: 

/
1

,
1 1

1 0

1
( ) ( ) (1 ) 1,...,

0

k

k k

j bK
l-

k k k k j b b
k l

for j

q j α b γ q j lb L for j C
j

otherwise

  


 



   



                                                   (35) 

Based on eq. (34), we can calculate:  

a)  The average number of service-class k calls when the system state is j, ( )ky j :  

 
/

1 ,
1

ˆ( ) = ( )(1 ) ( )
k

k k

j b
k

k k l k j b b
l

y j α B q j lb L q j
  

 


                                                                              (36) 

b) The average number of service-class k calls in the system, kn , via eq. (32).  

c) The CC probabilities of service-class k calls, Cbk
, via eq. (33). Note that Cbk refers to the 

call congestion probability of an arbitrary call of a batch.  

d) The TC probabilities of service-class k calls, Pbk
, according to eq. (28). Note that Pbk 

coincides with the call congestion probability of the first call of a batch.  

0 j-lbk

   
1 -1

ˆ1 k
j k lL B  

j C 

( )k ky j 



 To summarize the steps for the calculation of q(j)’s in the case of the batched Poisson 

process, one can consider the 3rd column of Table II. The only difference is on step 7 where 

q(j)’s should be determined by eq. (34) (or eq. (35) if the geometric batch size distribution is 

required).   

 

5. Numerical results  

In this section, we compare the analytical results of TC and CC probabilities, obtained by 

the proposed model for the batched Poisson process, for various values of the interference 

cancellation efficiency. For comparison we also present the corresponding analytical results 

obtained in the case of the Poisson process. To improve the readability of figures of this 

section and since simulation and analytical results are very close, we only present analytical 

results in figure format. However, at the end of this section we present, for comparison, 

analytical and simulation CC probabilities results in table format. Simulations are carried via 

the SIMSCRIPT III language [27] and are mean values of 7 runs.  

Consider a W-CDMA cell that accommodates calls of K=3 different service-classes. Calls 

arrive in the cell according to a batched Poisson process. The batch size distribution of all 

service-classes follows the geometric distribution with parameters: γ1=5/6, γ2=0.750 and 

γ3=0.600, respectively. This means that the average batch size of the three service-classes is: 

1B̂ = 6 calls, 2B̂ = 4 calls and 3B̂ = 2.5 calls. As far as the service time of calls is concerned, it 

follows the exponential distribution with mean value 1 1 1
1 2 3 1μ μ μ     . In Table III, we 

present the traffic characteristics of all service-classes. In addition, we assume that: UL =0.75, 

i=0.35, δ=2.0, bbu=13.5 kcps while the interference cancellation efficiency β takes the values 

0.0, 0.3 and 0.7. In the x-axis of Figs 9-14 and in the 1st column of Tables IV-VI, the offered 

traffic load of the 1st, 2nd and 3rd service-class increase in steps of 0.2, 0.1 and 0.05 erl, 

respectively. So, point 1 refers to: (α1, α2, α3) = (0.2, 0.1, 0.05) while point 8 to: (α1, α2, α3) = 

(1.6, 0.8, 0.4).   

 

 

Table III: Traffic parameters of the three service-classes. 
 

       
Service-
class k 

Rk 
(kbps) 

vk 

0

b

k

E

N

 
 
 

 

(in dB) 
0

b

k

E

N

 
 
 

 

γk ak 
(in erl) 

1 7.95 0.67 4.0 2.51 0.833 0.2 
2 12.20 0.67 4.0 2.51 0.750 0.1 
3 32.00 1.0 3.0 2.00 0.600 0.05 

 

Figures 9-11 present the analytical TC probabilities of each service-class, while Figs. 12-

14 present the corresponding CC probabilities. Based on these results, we conclude that: 1) 

CC probabilities are always higher than TC probabilities in the case of the batched Poisson 

process. This result is expected and shows the consistency of the proposed model. 2) The 



increase of β results in the decrease of TC and CC probabilities. This result is also expected, 

since the interference cancellation reduces the own-cell interference. 3) The TC and CC 

probabilities obtained by assuming Poisson arrivals fail to approximate the corresponding TC 

and CC probabilities in the case of the batched Poisson process. This result shows the 

necessity of the proposed model and is also expected, since a batched Poisson process is more 

“peaked” and “bursty” than a Poisson process.   

In Tables IV-VI, we present the analytical and simulation CC probabilities results, for the 

last call of a service-class k batch (k=1, 2, 3) and for β=0.0, 0.3 and 0.7, respectively. The 

analytical calculation of this CC probability is given by the formula  
,

1
k last kb k bC C  .  

Based on Tables IV-VI, we see that simulation results are quite satisfactory compared to 

analytical results. Of similar accuracy are the simulation results of Figs. 9-14 and thus not 

presented. Furthermore, we see that the increase of the interference cancellation efficiency β, 

decreases the CC probabilities of the last call of a service-class k batch.   

 
 

 
Figure 9: TC probabilities of the 1st service-class. 



 
 

Figure 10: TC probabilities of the 2nd service-class. 
 

 
Figure 11: TC probabilities of the 3rd service-class. 



 
 

 
Figure 12: CC probabilities of the 1st service-class. 

 

 
Figure 13: CC probabilities of the 2nd service-class. 

 



 
Figure 14: CC probabilities of the 3rd service-class. 

 

Table IV: CC probabilities of the last call of a batch (when β=0.0) 
Offered traffic-

load point 
1,lastbC  

(analytical) 

1,lastbC  

(simulation) 

2,lastbC  

(analytical) 

2,lastbC  

(simulation) 

3,lastbC  

(analytical) 

3,lastbC  

(simulation) 

1 0.01061 0.01062 0.01669 0.01670 0.03506 0.03509 

2 0.01183 0.01185 0.01864 0.01866 0.03935 0.03939 

3 0.01318 0.01319 0.02081 0.02082 0.04408 0.04410 

4 0.01466 0.01468 0.02319 0.02320 0.04923 0.04927 

5 0.01629 0.01630 0.02577 0.02579 0.05479 0.05483 

6 0.01804 0.01805 0.02856 0.02857 0.06072 0.06077 

7 0.01990 0.01992 0.03153 0.03156 0.06698 0.06702 

8 0.02187 0.02188 0.03467 0.03469 0.07352 0.07356 

 

Table V: CC probabilities of the last call of a batch (when β=0.3) 
Offered traffic-

load point 
1,lastbC  

(analytical) 

1,lastbC  

(simulation) 

2,lastbC  

(analytical) 

2,lastbC  

(simulation) 

3,lastbC  

(analytical) 

3,lastbC  

(simulation) 

1 0.01053 0.01053 0.01573 0.01574 0.03344 0.03348 

2 0.01166 0.01167 0.01743 0.01745 0.03728 0.03731 

3 0.01292 0.01293 0.01930 0.01932 0.04148 0.04152 

4 0.01430 0.01431 0.02136 0.02137 0.04608 0.04612 

5 0.01580 0.01582 0.02357 0.02358 0.05104 0.05110 

6 0.01742 0.01743 0.02600 0.02603 0.05639 0.05643 

7 0.01914 0.01915 0.02859 0.02860 0.06204 0.06207 

8 0.02097 0.02099 0.03130 0.03134 0.06797 0.06801 



 

Table VI: CC probabilities of the last call of a batch (when β=0.7) 
Offered traffic-

load point 
1,lastbC  

(analytical) 

1,lastbC  

(simulation) 

2,lastbC  

(analytical) 

2,lastbC  

(simulation) 

3,lastbC  

(analytical) 

3,lastbC  

(simulation) 

1 0.01049 0.01050 0.01568 0.01569 0.03086 0.03090 

2 0.01159 0.01159 0.01731 0.01732 0.03424 0.03429 

3 0.01279 0.01280 0.01910 0.01912 0.03795 0.03800 

4 0.01411 0.01411 0.02109 0.02110 0.04203 0.04206 

5 0.01555 0.01557 0.02322 0.02323 0.04646 0.04651 

6 0.01711 0.01712 0.02554 0.02556 0.05122 0.05126 

7 0.01877 0.01889 0.02802 0.02803 0.05630 0.05634 

8 0.02050 0.02052 0.03067 0.03069 0.06167 0.06170 

 

 

6. Conclusion  

We propose a new multirate loss model for the call-level analysis of CDMA networks that 

support calls from different service-classes whose arrival follows a batched Poisson process. 

Calls are accepted in the system according to the partial batch blocking discipline. The new 

model takes into account the multiple access interference, the notion of local (soft) blocking, 

user’s activity and the interference cancellation. Due to the existence of local blocking, the 

proposed model does not have a product form solution. However, we show an approximate 

but recursive formula for the calculation of occupancy distribution and consequently the 

determination of time and call congestion probabilities. In addition, we study the effect of the 

interference cancellation efficiency in these performance measures. Simulation results verify 

the accuracy of the proposed model.     

 

Appendix A 

Proof of eq. (10) 

Substituting eq. (6) in eq. (9) we have: 
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 which is eq. (10).                                                                        
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