Skip to main content
Log in

Parallel Sub-Channel Transmission for Cognitive Radios with Multiple Antennas

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In a cognitive radio network that the transceivers have multiple antennas, the secondary users are in cognizant of the spatial channels toward the primary users. The secondary transmitter adjusts the spatial spectrum of its transmission in order to maximize its own information rate while generating acceptable interference to the primary receivers. This paper investigates the rate maximization problem of parallel sub-channel transmission for cognitive radios. The sub-channels are along the spatial directions of the projected channel matrix that nullifies the dominant directions toward the primary receiver, and the power allocation on these sub-channels follows a multi-level water-filling solution. Simulation and experimental results show that, when the number of dimensions of the projected channel matrix is appropriately chosen, this practical transmission method can reach a maximum information rate that is close to the rate of the computationally expensive optimal transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  2. Liang, Y.-C., Chen, K.-C., Li, G. Y., & Mähönen, P. (2011). Cognitive radio networking and communications: An overview. IEEE Transactions on Vehicular Technology, 60(7), 3386–3407.

    Article  Google Scholar 

  3. Zhang, R., & Liang, Y.-C. (2008). Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 88–102.

    Article  Google Scholar 

  4. Scutari, G., Palomar, D. P., & Barbarossa, S. (2008). Cognitive MIMO radio. IEEE Signal Processing Magazine, 25(6), 46–59.

    Article  Google Scholar 

  5. Srinivasa, S., & Jafar, S. A. (2007). Cognitive radios for dynamic spectrum access—the throughput potential of cognitive radio: A theoretical perspective. IEEE Communications Magazine, 45(5), 73–79.

    Article  Google Scholar 

  6. Costa, M. H. M. (1983). Writing on dirty paper. IEEE Transactions on Information Theory, 29(3), 439–441.

    Article  MATH  Google Scholar 

  7. Devroye, N., Mitran, P., & Tarokh, V. (2006). Achievable rates in cognitive radio channels. IEEE Transactions on Information Theory, 52(5), 1813–1827.

    Article  MATH  MathSciNet  Google Scholar 

  8. Wu, W., Vishwanath, S., & Arapostathis, A. (2007). Capacity of a class of cognitive radio channels: Interference channels with degraded message sets. IEEE Transactions on Information Theory, 53(11), 4391–4399.

    Article  MathSciNet  Google Scholar 

  9. Sridharan, S., & Vishwanath, S. (2008). On the capacity of a class of MIMO cognitive radios. IEEE Journal of Selected Topics in Signal Processing, 2(1), 103–117.

    Article  Google Scholar 

  10. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Article  Google Scholar 

  11. Jovičić, A., & Viswanath, P. (2009). Cognitive radio: An information-theoretic perspective. IEEE Transactions on Information Theory, 55(9), 3945–3958.

    Article  Google Scholar 

  12. Kim, S.-J., & Giannakis, G. B. (2011). Optimal resource allocation for MIMO ad hoc cognitive radio networks. IEEE Transactions on Information Theory, 57(5), 3117–3131.

    Article  MathSciNet  Google Scholar 

  13. Perlaza, S. M., Fawaz, N., Lasaulce, S., & Debbah, M. (2010). From spectrum pooling to space pooling: Opportunistic interference alignment in MIMO cognitive networks. IEEE Transactions on Signal Processing, 58(7), 3728–3741.

    Article  MathSciNet  Google Scholar 

  14. Amir, M., El-Keyi, A., & Nafie, M. (2011). Constrained interference alignment and the spatial degrees of freedom of MIMO cognitive networks. IEEE Transactions on Information Theory, 57(5), 2994–3004.

    Article  Google Scholar 

  15. Jafar, S. A., & Goldsmith, A. (2004). Transmitter optimization and optimality of beamforming for multiple antenna systems. IEEE Transactions on Wireless Communications, 3(4), 1165–1175.

    Article  Google Scholar 

  16. Jorswieck, E. A., & Boche, H. (2004). Channel capacity and capacity-range of beamforming in MIMO wireless systems under correlated fading with covariance feedback. IEEE Transactions on Wireless Communications, 3(5), 1543–1553.

    Article  Google Scholar 

  17. Mao, J., Gao, J., Liu, Y., Xie, G., & Li, X. (2012). Power allocation over fading cognitive MIMO channels: An ergodic capacity perspective. IEEE Transactions on Vehicular Technology, 61(3), 1162–1173.

    Article  Google Scholar 

  18. Zhang, L., Liang, Y.-C., Xin, Y., & Poor, H. V. (2009). Robust cognitive beamforming with partial channel state information. IEEE Transactions on Wireless Communications, 8(8), 4143–4153.

    Article  Google Scholar 

  19. Gharavol, E. A., Liang, Y.-C., & Mouthaan, K. (2011). Robust linear transceiver design in MIMO ad hoc cognitive radio networks with imperfect channel state information. IEEE Transactions on Wireless Communications, 10(5), 1448–1457.

    Article  Google Scholar 

  20. Yang, Y., Scutari, G., Song, P., & Palomar, D. P. (2013). Robust MIMO cognitive radio systems under interference temperature constraints. IEEE Journal on Selected Areas in Communications, 31(11), 2465–2482.

    Article  Google Scholar 

  21. Phan, K. T., Vorobyov, S. A., Sidiropoulos, N. D., & Tellambura, C. (2009). Spectrum sharing in wireless networks via QoS-aware secondary multicast beamforming. IEEE Transactions on Signal Processing, 57(6), 2323–2335.

    Article  MathSciNet  Google Scholar 

  22. Huang, Y., Li, Q., Ma, W.-K., & Zhang, S. (2012). Robust multicast beamforming for spectrum sharing-based cognitive radios. IEEE Transactions on Signal Processing, 60(1), 527–533.

    Article  MathSciNet  Google Scholar 

  23. Shen, C., & Fitz, M. P. (2011). Opportunistic spatial orthogonalization and its application in fading cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 5(1), 182–189.

    Article  Google Scholar 

  24. Noam, Y., & Goldsmith, A. J. (2013). Blind null-space learning for MIMO underlay cognitive radio with primary user interference adaptation. IEEE Transactions on Wireless Communications, 12(4), 1722–1734.

    Article  Google Scholar 

  25. Zhang, R., Liang, Y.-C., & Cui, S. (2010). Dynamic resource allocation in cognitive radio networks. IEEE Signal Processing Magazine, 27(3), 102–114.

    Article  MathSciNet  Google Scholar 

  26. Zhang, Y. J. A., & So, A. M.-C. (2011). Optimal spectrum sharing in MIMO cognitive radio networks via semidefinite programming. IEEE Journal on Selected Areas in Communications, 29(2), 362–373.

    Article  Google Scholar 

  27. Du, H., Ratnarajah, T., Pesavento, M., & Papadias, C. B. (2012). Joint transceiver beamforming in MIMO cognitive radio network via second-order cone programming. IEEE Transactions on Signal Processing, 60(2), 781–792.

    Article  MathSciNet  Google Scholar 

  28. Devillers, B., Louveaux, J., & Vandendorpe, L. (2008). Bit and power allocation for goodput optimization in coded parallel subchannels with ARQ. IEEE Transactions on Signal Processing, 56(8), 3652–3661.

    Article  MathSciNet  Google Scholar 

  29. Jiang, Y., Li, J., & Hager, W. W. (2005). Joint transceiver design for MIMO communications using geometric mean decomposition. IEEE Transactions on Signal Processing, 53(10), 3791–3803.

    Article  MathSciNet  Google Scholar 

  30. Clerckx, B., & Oestges, C. (2013). MIMO wireless networks: Channels, techniques and standards for multi-antenna, multi-user and multi-cell systems (2nd ed.). Waltham: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Liu, Y. Parallel Sub-Channel Transmission for Cognitive Radios with Multiple Antennas. Wireless Pers Commun 79, 2069–2087 (2014). https://doi.org/10.1007/s11277-014-1974-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1974-x

Keywords

Navigation