Skip to main content
Log in

Exploiting User Movement Direction and Hidden Access Point for Smartphone Localization

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose a global positioning system-less localization method, called Hidden Access Point Estimation-based Localization (HAPEL) to pinpoint user’s current position in an underground or indoor environment, especially where access points (APs) are placed scarcely in that two or less Wi-Fi APs are within the scanning range. Conceptually, HAPEL enhances the weighted centroid localization (WCL) by exploiting hidden APs and estimating the direction of user movement. The movement direction can be estimated with digital compass, accelerometer and gyroscope, all of which are usually installed on smartphones, and the estimation result is used to choose which hidden APs participate in the WCL. We have conducted a performance evaluation study on HAPEL in comparison with WCL and fingerprint methods in an empirical test-bed. The results indicate that HAPEL improves the accuracy of the WCL significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. This is reasonable since all APs deployed in a infrastructure-based Wi-Fi have the same SSID.

References

  1. Bahl, P., & Padmanabhan, V. (2000). Radar: An in-building RF-based user location and tracking system. In INFOCOM 2000. Nineteenth annual joint conference of the IEEE Computer and Communications Societies. Proceedings. IEEE (Vol. 2, pp. 775–784).

  2. Behnke, R., & Timmermann, D. (2008). AWCL: Adaptive weighted centroid localization as an efficient improvement of coarse grained localization. In 5th workshop on positioning, navigation and communication, 2008. WPNC 2008 (pp. 243–250). doi:10.1109/WPNC.2008.4510381.

  3. Blumenthal, J., Reichenbach, F., & Timmermann, D. (2005). Position estimation in ad-hoc wireless sensor networks with low complexity. In Joint 2nd workshop on positioning, navigation and communication 2005 (WPNC 05) and 1st ultra-wideband expert talk 2005 (pp. 41–49).

  4. Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low-cost outdoor localization for very small devices. Personal Communications, IEEE, 7(5), 28–34.

    Article  Google Scholar 

  5. Cook, M. (1997). Flight dynamic priciples (2nd ed.). London: Butterworth-Heinemann.

    Google Scholar 

  6. Cui, Y., & Ge, S. S. (2003). Autonomous vehicle positioning with GPS in urban canyon environments. IEEE Transactions on Robotics and Automation, 19(1), 15–25. doi:10.1109/TRA.2002.807557.

    Article  Google Scholar 

  7. Fischer, C., Muthukrishnan, K., Hazas, M., & Gellersen, H. (2008). Ultrasound-aided pedestrian dead reckoning for indoor navigation. In Proceedings of the first ACM international workshop on mobile entity localization and tracking in GPS-less environments, MELT ’08 (pp. 31–36). ACM, New York, NY, USA. doi:10.1145/1410012.1410020.

  8. Fu, X., Zhang, N., Pingley, A., Yu, W., Wang, J., & Zhao, W. (2012). The digital marauder’s map: A wifi forensic positioning tool. IEEE Transactions on Mobile Computing, 11(3), 377–389. doi:10.1109/TMC.2011.70.

  9. Haeberlen, A., Flannery, E., Ladd, A. M., Rudys, A., Wallach, D. S., & Kavraki, L. E. (2004). Practical robust localization over large-scale 802.11 wireless networks. In Proceedings of the 10th annual international conference on mobile computing and networking, MobiCom ’04 (pp. 70–84). ACM, New York, NY, USA.

  10. Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J. (1997). Global positioning system: Theory and practice. Berlin: Springer.

    Google Scholar 

  11. Hong, J., & Kim, H. (2011). An empirical framework for user mobility models: Refining and modeling user registration patterns. Journal of Computer and System Sciences, 77(5), 869–883. doi:10.1016/j.jcss.2010.08.005. http://www.sciencedirect.com/science/article/pii/S0022000010001121.

  12. Kim, H., Kim, H., Lee, S., Park, E. C., & Park, K. J. (2011). Enabling location-aware quality-controlled access in wireless networks. EURASIP Journal on Wireless Communications and Networking, 1, 102. doi:10.1186/1687-1499-2011-102. http://jwcn.eurasipjournals.com/content/2011/1/102.

  13. Kim, Y., Chon, Y., & Cha, H. (2012). Smartphone-based collaborative and autonomous radio fingerprinting. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42(1), 112–122. doi:10.1109/TSMCC.2010.2093516.

    Article  Google Scholar 

  14. Koide, S., & Kato, M. (2005). 3-d human navigation system considering various transition preferences. In IEEE international conference on systems, man and cybernetics, 2005 (Vol. 1, pp. 859–864). doi:10.1109/ICSMC.2005.1571254.

  15. Ladetto, Q., Gabaglio, V., & Merminod, B. (2001). Combining gyroscopes, magnetic compass and GPS for pedestrian navigation. In International symposium on kinematic systems in geodesy, geomatics and navigation (KIS) (pp. 205–212).

  16. Lim, H., Kung, L. C., Hou, J. C., & Luo, H. (2005). Zero-configuration, robust indoor localization: Theory and experimentation. Technical report. University of Illinois at Urbana-Champaign, Department of Computer Science.

  17. Liu, H., Gan, Y., Yang, J., Sidhom, S., Wang, Y., Chen, Y., & Ye, F. (2012). Push the limit of wifi based localization for smartphones. In Proceedings of the 18th annual international conference on mobile computing and networking, Mobicom ’12 (pp. 305–316). ACM, New York, NY, USA. doi:10.1145/2348543.2348581.

  18. Mezentsev, O., Jussi C., & Lachapelle, G. (2005). Pedestrian dead reckoning—A solution to navigation in GPS signal degraded areas? Geomatica, 59(2), 175–182.

  19. Park, J., Curtis, D., Teller, S., & Ledlie, J. (2011). Implications of device diversity for organic localization. In INFOCOM, 2011 Proceedings IEEE (pp. 3182–3190). doi:10.1109/INFCOM.2011.5935166.

  20. Park, J. G., Charrow, B., Curtis, D., Battat, J., Minkov, E., Hicks, J., et al. (2010). Growing an organic indoor location system. In Proceedings of the 8th international conference on mobile systems, applications, and services, MobiSys ’10 (pp. 271–284). ACM, New York, NY, USA.

  21. Peng, C., Shen, G., Zhang, Y., Li, Y., & Tan, K. (2007). Beepbeep: A high accuracy acoustic ranging system using cots mobile devices. In Proceedings of the 5th international conference on embedded networked sensor systems, SenSys ’07 (pp. 1–14). ACM, New York, NY, USA. doi:10.1145/1322263.1322265.

  22. Roy, A., Das, S., & Basu, K. (2007). A predictive framework for location-aware resource management in smart homes. IEEE Transactions on Mobile Computing, 6(11), 1270–1283. doi:10.1109/TMC.2007.1058.

    Article  Google Scholar 

  23. Schuhmann, S., Herrmann, K., Rothermel, K., Blumenthal, J., & Timmermann, D. (2008). Improved weighted centroid localization in smart ubiquitous environments. In F. Sandnes, Y. Zhang, C. Rong, L. Yang, & J. Ma (Eds.), Ubiquitous intelligence and computing. Lecture notes in computer science (Vol. 5061, pp. 20–34). Berlin, Heidelberg: Springer.

  24. Tsui, A., Lin, W. C., Chen, W. J., Huang, P., & Chu, H. H. (2010). Accuracy performance analysis between war driving and war walking in metropolitan Wi-Fi localization. IEEE Transactions on Mobile Computing, 9(11), 1551–1562. doi:10.1109/TMC.2010.121.

    Article  Google Scholar 

  25. Walter, O., Schmalenstroeer, J., Engler, A., & Haeb-Umbach, R. (2012). Smartphone-based sensor fusion for improved vehicular navigation. In 9th workshop on positioning navigation and communication (WPNC 2012).

  26. Wang, H., Sen, S., Elgohary, A., Farid, M., Youssef, M., & Choudhury, R. R. (2012). No need to war-drive: Unsupervised indoor localization. In Proceedings of the 10th international conference on mobile systems, applications, and services, MobiSys ’12 (pp. 197–210). ACM, New York, NY, USA. doi:10.1145/2307636.2307655.

  27. Wu, H., Marshall, A., & Yu, W. (2007). Path planning and following algorithms in an indoor navigation model for visually impaired. In ICIMP ’07 proceedings of the second international conference on internet monitoring and protection (p. 38). IEEE. doi:10.1109/ICIMP.2007.31.

Download references

Acknowledgments

This research was supported in part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2010388), and in part by the ICT R&D program of MSIP/IITP [14-000-04-001, Development of 5G Mobile Communication Technologies for Hyper-connected Smart Services].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwangnam Kim.

Additional information

Seungho Yoo and Eugene Kim have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, S., Kim, E. & Kim, H. Exploiting User Movement Direction and Hidden Access Point for Smartphone Localization. Wireless Pers Commun 78, 1863–1878 (2014). https://doi.org/10.1007/s11277-014-2049-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2049-8

Keywords

Navigation