Skip to main content
Log in

A Stochastic Differential Game Theoretic Study of Multipath Routing in Heterogeneous Wireless Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In heterogeneous wireless networks (HWNs), paths constituting multipath routing are characterized by selfish rationality. Each path’s intentions of pursuing individual profits may cause unreasonable competition for limited wireless resources, which leads to the unreliable data transport problem. Therefore, multipath routing optimization is a challenge issue in HWNs. This paper provides a novel approach to study this issue by employing game theory. By taking the utility maximization as the design goal, limited bandwidth resources as the constraint and path reliability as the key metric, a noncooperative stochastic differential game model is constructed for HWNs. With the feedback Nash equilibrium solution, an optimal multipath routing strategy is obtained. Theoretical derivations and simulation results verify the validity of the method present in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Niyato, D., & Hossain, E. (2009). Dynamics of network selection in heterogeneous wireless networks: An evolutionary game approach. IEEE Transaction on Vehicular Technology, 58(4), 2008–2017.

    Article  Google Scholar 

  2. Xu, C., Liu, T., Guan, J., Zhang, H., Zhang, H., & Muntean, G. (2013). CMT-QA: Quality-aware adaptive concurrent multipath data transfer in heterogeneous wireless networks. IEEE Transaction on Mobile Computing, 12(11), 2193–2205.

    Article  Google Scholar 

  3. Chebrolu, K., & Rao, R. R. (2006). Bandwidth aggregation for real-time applications in heterogeneous wireless networks. IEEE Transaction on Mobile Computing, 5(4), 388–403.

    Article  Google Scholar 

  4. Marina, M. K., & Das, S. R. (2001). On-demand multipath distance vector routing in ad hoc networks. In Proceedings of the 9th international conference on network protocols, pp. 14–23.

  5. Sha, K., Gehlot, J., & Greve, R. (2013). Multipath routing techniques in wireless sensor networks: A survey. Wireless Personal Communications, 70(2), 807–829.

    Article  Google Scholar 

  6. De Couto, D. S. J., Aguayo, D., et al. (2005). A high-throughput path metric for multi-hop wireless routing. Wireless Networks, 11(4), 419–434.

    Article  Google Scholar 

  7. Roy, S., Koutsonikolas, D., Das, S., et al. (2008). High-throughput multicast routing metrics in wireless mesh networks. Ad Hoc Networks, 6(6), 878–899.

    Article  Google Scholar 

  8. Draves, R., Padhye, J., & Zill, B. (2004). Routing in multi-radio, multi-hop wireless mesh networks. In Proceedings of the 10th annual international conference on mobile computing and networking, pp. 114–128.

  9. Zorzi, M., & Rao, R. R. (2003). Geographic random forwarding (GeRaF) for ad hoc and sensor networks: Energy and latency performance. IEEE Transactions on Mobile Computing, 2(4), 349–365.

    Article  Google Scholar 

  10. Zeng, K., Lou, W., Yang, J., & III Brown, D. R. (2007). On throughput efficiency of geographic opportunistic routing in multihop wireless networks. Mobile Networks and Applications, 12(5), 347–357.

    Article  Google Scholar 

  11. Radi, M., Dezfouli, B., Abu Bakar, K., Abd Razaka, S., & Nematbakhshb, M. A. (2011). Interference-aware multipath routing protocol for QoS improvement in event-driven wireless sensor networks. Tsinghua Science and Technology, 16(5), 475–490.

    Article  Google Scholar 

  12. Yeung, D. W. K., & Petrosyan, L. A. (2005). Cooperative stochastic differential games. New York: Springer.

    Google Scholar 

  13. Zhou, X., Cheng, Z., Ding, Y., et al. (2012). A optimal power control strategy based on network wisdom in wireless networks. Operations Research Letters, 40(6), 475–477.

    Article  MATH  MathSciNet  Google Scholar 

  14. Xu, H., Zhou, X., & Chen, Y. (2013). A differential game model of automatic load balancing in LTE networks. Wireless Personal Communications, 71(1), 165–180.

    Article  MathSciNet  Google Scholar 

  15. Wang, X., Zhou, X., & Song, J. (2012). Transmission power control and routing strategy based on differential games in deep space exploration. Wireless Personal Communications, 67, 895–912.

    Article  Google Scholar 

  16. Miao, X., Zhou, X., & Huayi, W. (2010). A cooperative differential game model based on transmission rate in wireless networks. Operations Research Letters, 38(4), 292–295.

    Article  MATH  MathSciNet  Google Scholar 

  17. Lin, L., Xianwei, Z., Liping, D., et al. (2009). Differential game model with coupling constraint for routing in ad hoc networks. In Proceedings of the 5th international conference on wireless communication, networking and mobile computing, pp. 3042–3045.

  18. Tao, M., Lu, D., & Yang, J. (2012). An adaptive energy-aware multi-path routing protocol with load balance for wireless sensor networks. Wireless Personal Communications, 63(4), 823–846.

    Article  Google Scholar 

  19. Weeraddana, P. C., Codreanu, M., & Latva-aho, M. (2011). Resource allocation for cross-layer utility maximization in wireless networks. IEEE Transactions on Vehicular Technology, 60(6), 2790–2809.

    Article  Google Scholar 

  20. Abdur Razzaque, M., & Mamun-Or-Rashid, M. (2009). Aggregated traffic flow weight controlled hierarchical MAC protocol for wireless sensor networks. Annals of Telecommunications, 64(11–12), 705–721.

    Article  Google Scholar 

  21. Kelly, F. P., Maulloo, A. K., & Tan, D. K. H. (1998). Rate control for communication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49(3), 237–252.

    Article  MATH  Google Scholar 

  22. Li, Z., & Wang, R. (2010). Load balancing-based hierarchical routing algorithm for wireless multimedia sensor networks. The Journal of China Universities of Posts and Telecommunications, 17(Suppl. 2), 51–59.

    Article  Google Scholar 

  23. Pham, P. P., & Perreau, S. (2004). Increasing the network performance using multi-path routing mechanism with load balance. Ad Hoc Networks, 2, 433–459.

    Article  Google Scholar 

  24. Grosu, D., Chronopoulos, A. T., & Ming-Ying, L. (2002). Load Balancing in distributed systems: An approach using cooperative games. In Proceedings of international parallel and distributed processing symposium (IPDPS 2002), Ft. Lauderdale, FL, USA.

  25. Grosu, D., & Chronopoulos, A. T. (2005). Noncooperative load balancing in distributed systems. Journal of Parallel and Distributed Computing, 65(9), 1022–1034.

    Article  MATH  Google Scholar 

  26. Bodlaender, H. L., Thomassé, S., & Yeo, A. (2011). Kernel bounds for disjoint cycles and disjoint paths. Theoretical Computer Science, 412(35), 4570–4578.

    Article  MATH  MathSciNet  Google Scholar 

  27. Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), 3–55.

    Article  Google Scholar 

  28. Razzaque, M. A., Alam, M. M., Mamun-or-Rashid, M., & Hong, C. S. (2008). Multi-constrained QoS geographic routing for heterogeneous traffic in sensor networks. IEICE Transaction on Communications, E91–B(8), 2589–2601.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous reviewer for constructive suggestions that have improved the quality of this paper. This work has been supported by the National Key Technology R&D Program of P. R. China (Grant No. 2011BAH10B03-1) and the National High-Tech Research and Development Program of P. R. China (Grant No. 2012AA121604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahui Hu.

Appendices

Appendix 1: Proof of Corollary 1

Proof

Maximizing the right-hand-side of (10) for path-\(i\), and arranging the equation we get

$$\begin{aligned} \sum _{j=1,j\ne i}^n {\phi _j^*\left( {t,x} \right) } \hbox {+2}\phi _{_i }^*\left( {t,x} \right) =\xi ^{-1}\left\{ {\lambda -\delta q_i {+}\exp [r(t-t_0 )]p_i V_x^i } \right\} \end{aligned}$$
(18)

For \(i = 1,2,\ldots ,n\), there is an system of linear equations

$$\begin{aligned} \left\{ {{\begin{array}{l} {2\phi _1^*\left( {t,x} \right) {+}\phi _2^*\left( {t,x} \right) {+}\cdots {+}\phi _n^*\left( {t,x} \right) = \xi ^{-1}\left\{ {\lambda -\delta q_1 +\exp [r(t-t_0 )]p_1 V_x^1 } \right\} } \\ {\phi _1^*\left( {t,x} \right) \hbox {+2}\phi _2^*\left( {t,x} \right) {+}\cdots {+}\phi _n^*\left( {t,x} \right) = \xi ^{-1}\left\{ {\lambda -\delta q_2 +\exp [r(t-t_0 )]p_2 V_x^2 } \right\} } \\ \vdots \\ {\phi _1^*\left( {t,x} \right) {+}\phi _2^*\left( {t,x} \right) {+}\cdots \hbox {+2}\phi _n^*\left( {t,x} \right) = \xi ^{-1}\left\{ {\lambda -\delta q_n +\exp [r(t-t_0 )]p_n V_x^n } \right\} } \\ \end{array} }} \right. \end{aligned}$$
(19)

Summing over the right-hand-side and the left-hand-side respectively in (18), we get

$$\begin{aligned}&\phi _1^*\left( {t,x} \right) +\phi _2^*\left( {t,x} \right) +\cdots +\phi _n^*\left( {t,x} \right) \nonumber \\&\quad = \ \left[ {\xi \left( {n+1} \right) } \right] ^{-1}\left\{ {n\lambda -\delta \sum _{j=1}^n {q_j } +\exp \left[ {r\left( {t-t_0 } \right) } \right] \sum _{j=1}^n {p_j V_x^j } } \right\} \end{aligned}$$
(20)

There, we have two methods to obtain the solution of \(\phi _i^*\left( {t,x} \right) \). \(\square \)

Solution 1

Substituting (20) into (18), we get

$$\begin{aligned}&\left[ {\xi \left( {n+1} \right) } \right] ^{-1}\sum _{j=1}^n {\left\{ {\lambda -\delta q_j -\exp [r(t-t_0 )]p_j V_x^j } \right\} } +\phi _i^*\left( {t,x} \right) \nonumber \\&\quad = \ \xi ^{-1}\left\{ {\lambda -\delta q_i {+}\exp [r(t-t_0 )]p_i V_x^i } \right\} \end{aligned}$$
(21)

Arranging (21), then

$$\begin{aligned} \phi _i^*\left( {t,x} \right)&= \left[ {\xi \left( {n+1} \right) } \right] ^{-1}\left\{ \lambda +\delta \left( {\sum _{j=1,j\ne i}^n {q_j } {-}nq_i } \right) \right. \\&\left. -\exp \left[ {r\left( {t-t_0 } \right) } \right] \left[ {\sum _{j=1,j\ne i}^n {p_j V_x^j } {-}np_i V_x^i } \right] \right\} \end{aligned}$$

Solution 2

Letting (18) minus (20), we directly get

$$\begin{aligned} \phi _i^*\left( {t,x} \right)&= \left[ {\xi \left( {n+1} \right) } \right] ^{-1}\left\{ \lambda +\delta \left( {\sum _{j=1,j\ne i}^n {q_j } {-}nq_i } \right) \right. \\&\left. -\exp \left[ {r\left( {t-t_0 } \right) } \right] \left[ {\sum _{j=1,j\ne i}^n {p_j V_x^j } {-}np_i V_x^i } \right] \right\} \end{aligned}$$

This completes the proof of Corollary 1.

Appendix 2: Proof of Corollary 2

Proof

From (14), we get

$$\begin{aligned} \left\{ {{\begin{array}{l} V_x^i (t,x) = \hbox {exp}\left[ {-r\left( {t-t_0 } \right) } \right] \Gamma (t) \\ V_{xx}^i (t,x) = 0 \\ V_t^i (t,x) = \hbox {exp}\left[ {-r\left( {t-t_0 } \right) } \right] \left\{ {-r\left[ {\Gamma (t)x+\Lambda (t)} \right] +\left[ {\dot{\Gamma }(t)x+\dot{\Lambda }(t)} \right] } \right\} \\ \end{array} }} \right. \end{aligned}$$
(22)

Substituting (22) into (11) produces

$$\begin{aligned}&-r\left[ {\Gamma (t)x+\Lambda (t)} \right] +\left[ {\dot{\Gamma }(t)x+\dot{\Lambda }(t)} \right] \nonumber \\&\quad = \ \left[ {\lambda \phi _i^*\left( {t,x} \right) -\xi \left( {\sum _{j=1}^n {\phi _j^*\left( {t,x} \right) } } \right) \phi _i^*\left( {t,x} \right) -\delta q_i \phi _i^*\left( {t,x} \right) } \right] \nonumber \\&\qquad +\Gamma (t)\left[ {ax-\left( {\sum _{j=1}^n {\phi _j^*\left( {t,x} \right) } } \right) } \right] \nonumber \\&\quad = \ \left[ {\left( {\lambda -\delta q_i } \right) \phi _i^*\left( {t,x} \right) -\xi \left( {\sum _{j=1}^n {\phi _j^*\left( {t,x} \right) } } \right) \phi _i^*\left( {t,x} \right) } \right] \nonumber \\&\qquad +\Gamma (t)\left[ {ax-\left( {\sum _{j=1}^n {\phi _j^*\left( {t,x} \right) } } \right) } \right] \end{aligned}$$
(23)

Meanwhile, substituting (22) into (13) produces

$$\begin{aligned} \phi _i^*\left( {t,x} \right) =f_i +\exp \left[ {r\left( {t-t_0 } \right) } \right] \sum _{i=1}^n {g_i V_x^i } = f_i {+}\Gamma (t)\sum _{i=1}^n {g_i } \end{aligned}$$
(24)

Thus

$$\begin{aligned} \dot{\Gamma }(t)x+\dot{\Lambda }(t)&= r\left[ {\Gamma (t)x+\Lambda (t)} \right] +\left[ {\lambda {-}\delta q_i -\xi \left( {\sum _{j=1}^n {\phi _j^*\left( {t,x} \right) } } \right) } \right] \left( {f_i {+}\Gamma (t)\sum _{i=1}^n {g_i } } \right) \nonumber \\&+\, \Gamma (t)\left[ {ax-\left( {\sum _{j=1}^n {\phi _j^*\left( {t,x} \right) } } \right) } \right] \nonumber \\&= \left( {r+a} \right) \Gamma (t)x+r\Lambda (t)+\left[ {\lambda {-}\delta q_i -\xi \left( {\sum _{i=1}^n {\left( {f_i {+}\Gamma (t)\sum _{i=1}^n {g_i } } \right) } } \right) } \right] \nonumber \\&\left( {f_i +\Gamma (t)\sum _{i=1}^n {g_i } } \right) -\Gamma (t)\sum _{i=1}^n {\left( {f_i {+}\Gamma (t)\sum _{i=1}^n {g_i } } \right) }\nonumber \\&= \left( {r+a} \right) \Gamma (t)x+r\Lambda (t)+\left( {\lambda -\delta q_i } \right) \left( {f_i {+}\Gamma (t)\sum _{i=1}^n {g_i } } \right) \nonumber \\&- \, \left[ {\xi \left( {f_i {+}\Gamma (t)\sum _{i=1}^n {g_i } } \right) {+}\Gamma (t)} \right] \sum _{i=1}^n {\left( {f_i {+}\Gamma (t)\sum _{i=1}^n {g_i } } \right) } \end{aligned}$$
(25)

Let \(\Theta (t)=\left( {\lambda {-}\delta q_i } \right) \left( {f_i {+}\Gamma (t)\sum _{i=1}^n {g_i } } \right) -\left[ {\xi \left( {f_i {+}\Gamma (t)\sum _{i=1}^n {g_i } } \right) {+}\Gamma (t)} \right] \sum _{i=1}^n \Big ( f_i {+}\Gamma (t)\sum _{i=1}^n {g_i } \Big ),\)

Then

$$\begin{aligned} \dot{\Gamma }(t)&= \left( {r+a} \right) \Gamma (t), \Gamma (T)=\mu ,\\ \dot{\Lambda }(t)&= r\Lambda (t)+\Theta (t), \Lambda (T)=-\mu \bar{{x}}_i . \end{aligned}$$

This completes the proof of Corollary 2. \(\square \)

Appendix 3: Derivation of (16)

Derivation Equation (15) is constituted by

$$\begin{aligned} \dot{\Gamma }(t)&= \left( {r+a} \right) \Gamma (t), \end{aligned}$$
(15-1)
$$\begin{aligned} \Gamma (T)&=\mu , \end{aligned}$$
(15-2)
$$\begin{aligned} \dot{\Lambda }(t)&= r\Lambda (t)+\Theta (t), \end{aligned}$$
(15-3)
$$\begin{aligned} \Lambda (T)&=-\mu \bar{{x}}_i , \end{aligned}$$
(15-4)

and

$$\begin{aligned} \Theta (t)=\left( {\lambda {-}\delta q_i } \right) \left( {f_i {+}\Gamma (t)\sum _{i=1}^n {g_i } } \right) \!-\!\left[ {\xi \left( {f_i {+}\Gamma (t)\sum _{i=1}^n {g_i } } \right) {+}\Gamma (t)} \right] \sum _{i=1}^n {\left( {f_i {+}\Gamma (t)\sum _{i=1}^n {g_i } } \right) }. \end{aligned}$$
(15-5)

It is noted that (15-1) is a homogeneous linear differential equation, while (15-3) is a nonhomogeneous linear differential equation, and both of them have their general solutions. The derivation of (16) is related to the solution process of linear differential equation. The derivation process is detailed as following:

Separate the variable of (15-1), we get

$$\begin{aligned} \frac{d\Gamma (t)}{\Gamma (t)} = \left( {r+a} \right) t. \end{aligned}$$
(26)

Integrate both sides of (26), we get

$$\begin{aligned} \ln \Gamma (t)= -\int _{t_0 }^t {\left( {r+a} \right) t} +\ln \overline{{\Gamma }}, \quad \overline{{\Gamma }}\hbox { is a constant. } \end{aligned}$$
(27)

Then,

$$\begin{aligned} \Gamma (t)&=\overline{{\Gamma }}\cdot \hbox {exp}\left[ {\int _{t_0 }^t {\left( {r+a} \right) t} } \right] \\&=\hbox {exp}\left[ {\left( {r+a} \right) \left( {t-t_0 } \right) } \right] \overline{{\Gamma }}. \end{aligned}$$
(16-1)

When \(t=T\),

$$\begin{aligned} \Gamma (T) = \overline{{\Gamma }}\cdot \hbox {exp}\left[ {\left( {r+a} \right) \left( {T-t_0 } \right) } \right] . \end{aligned}$$
(28)

Combining (28) and (15-2), we get

$$\begin{aligned} \overline{{\Gamma }}=\mu \hbox {exp}\left[ {-\left( {r+a} \right) \left( {T-t_0 } \right) } \right] . \end{aligned}$$
(16-2)

Let

$$\begin{aligned} \Lambda (t)&= Q(t)\cdot \exp \left[ {\int _{t_0 }^t {rds} } \right] \nonumber \\&= \, Q(t)\cdot \exp \left[ {r\left( {t-t_0 } \right) } \right] \end{aligned}$$
(29)

be the solution of the nonhomogeneous linear differential equation (15-3).

Substitute \(\dot{\Lambda }(t)\) and \(\Lambda (t)\) into (15-3), then

$$\begin{aligned} \dot{Q}(t)\cdot \exp \left[ {r\left( {s-t_0 } \right) } \right] {+}Q(t)\cdot \exp \left[ {r\left( {t-t_0 } \right) } \right] \cdot r{=}r\cdot Q(t)\cdot \exp \left[ {r\left( {t-t_0 } \right) } \right] +\Theta (t). \end{aligned}$$
(30)

Arrange (30), we get

$$\begin{aligned} \dot{Q}(t)=\Theta (t)\cdot \exp \left[ {-r\left( {s-t_0 } \right) } \right] . \end{aligned}$$
(31)

Integrate both sides of (31), we get

$$\begin{aligned} Q(t)=\int _{t_0 }^t {\Theta (s)\cdot \exp \left[ {-r\left( {s-t_0 } \right) } \right] ds} +\bar{{\Lambda }}, \quad \bar{{\Lambda }}\hbox { is a constant. } \end{aligned}$$
(32)

Substitute (32) into (29), we get

$$\begin{aligned} \Lambda (t){=}\exp \left[ {r\left( {t-t_0 } \right) } \right] \left( {\int _{t_0 }^t {\Theta (s)\cdot \exp \left[ {-r\left( {s-t_0 } \right) } \right] ds+\bar{{\Lambda }}} } \right) . \end{aligned}$$
(16-3)

When \(t=T\),

$$\begin{aligned} \Lambda (T){=}\left( {\int _{t_0 }^T {\Theta (t)\cdot \exp \left[ {-r\left( {s-t_0 } \right) } \right] ds+\bar{{\Lambda }}} } \right) \cdot \exp \left[ {r\left( {T-t_0 } \right) } \right] . \end{aligned}$$
(33)

Combining (33) and (15-4), we get

$$\begin{aligned} \bar{{\Lambda }}{=}-\mu \bar{{x}}_i \hbox {exp}\left[ {-r\left( {T-t_0 } \right) } \right] -\int _{t_0 }^T {\Theta (s)\hbox {exp}\left[ {-r\left( {s-t_0 } \right) } \right] ds} . \end{aligned}$$
(16-4)

Equations (16-1), (16-2), (16-3) and (16-4) constitute (16).

This completes the derivation of (16).

Appendix 4: Proof of Corollary 3

Proof

Solving the linear differential equation (9), we get

$$\begin{aligned} x^{*}(s)=\exp \left[ {\int _{t_0 }^t {ads} +\int _{t_0 }^t {\sigma dz(s)} } \right] \times \left\{ {x_0 +\sum _{i=1}^n {\left( {p_i \phi _i^*\left( {t,x} \right) } \right) } \left[ {\int _{t_0 }^t {ads} +\int _{t_0 }^t {\sigma dz(s)} } \right] } \right\} . \end{aligned}$$
(34)

Substituting the optimal load-control strategy (24) into (34) produces

$$\begin{aligned} x^{*}(s)&= \exp \left[ {\int _{t_0 }^t {ads} +\int _{t_0 }^t {\sigma dz(s)} } \right] \\&\times \left\{ {x_0 +\sum _{i=1}^n {p_i \left( {f_i {+}\Gamma (t)\sum _{i=1}^n {g_i } } \right) } \exp \left[ {-\left( {\int _{t_0 }^t {ads} +\int _{t_0 }^t {\sigma dz(s)} } \right) } \right] } \right\} . \end{aligned}$$

This completes the proof of Corollary 3. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Xie, Y. A Stochastic Differential Game Theoretic Study of Multipath Routing in Heterogeneous Wireless Networks. Wireless Pers Commun 80, 971–991 (2015). https://doi.org/10.1007/s11277-014-2065-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2065-8

Keywords

Navigation