Skip to main content
Log in

Optical Wireless Communication Systems Operation Performance Efficiency Evaluation in the Presence of Different Fog Density Levels and Noise Impact

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The free space optical communication technology tries to fulfill rising need for high bandwidth transmission capability link along with security and ease in installation. The free space optics uses beam of light to provide optical connection that can send and receive video, voice, and data information. In this paper a model analytical description of optical wireless communication systems operation performance efficiency evaluation in the presence of different fog density levels and noise is constructed. It is used for quantitative determination of the maximum range between transmitter and receiver depending on the signal transmission quality. Link margin, signal transmission, signal quality, received signal power, particle size distribution, optical depth, transmission data rate, signal time delay spread, signal noise and signal attenuation are deeply studied over wide range of the affecting parameters. Signal time delay spread and signal to noise ratio are deeply studied with using on-off keying modulation technique and are compared with their results with using binary phase shift keying in Li et al. (IEEE Trans Commun 55:1598–1606, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Kedar, D., & Arnon, S. (2004). Urban optical wireless communication networks: The main challenges and possible solutions. IEEE Communications Magazine, 42, S2–S7.

    Article  Google Scholar 

  2. Uysal, M., Li, J., & Yu, M. (2006). Error rate performance analysis of coded free-space optical links over gamma–gamma atmospheric turbulence channles. IEEE Transactions on Wireless Communications, 5(6), 1229–1233.

    Article  Google Scholar 

  3. Wu, H., & Kavehrad, M. (2007). Availability evaluation of ground-to-air hybrid FSO/RF links. International Journal of Wireless Information Networks, 14(1), 33–45.

    Article  Google Scholar 

  4. Kahn, J. M., Krause, W. J., & Carruthers, J. B. (1995). Experimental characterization of non directed indoor infrared channels. IEEE Transactions on Communications, 43, 1613–1623.

    Article  Google Scholar 

  5. Bohren, C. F., & Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. New York: Wiley.

    Google Scholar 

  6. Li, J., Liu, J. Q., & Taylor, D. P. (2007). Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels. IEEE Transactions on Communications, 55(8), 1598–1606.

    Article  Google Scholar 

  7. Zhu, X., & Kahn, J. M. (2002). Free-space optical communication through atmospheric turbulence channels. IEEE Transactions on Communications, 50, 1293–1300.

    Article  Google Scholar 

  8. Ohtsuki, T. (2002). Turbo-coded atmospheric optical communication systems. In IEEE international conference on communications (ICC) New York (pp. 2938–2942).

  9. Uysal, M., Jing, L., & Meng, Y. (2006). Error rate performance analysis of coded free-space optical links over gamma–gamma atmospheric turbulence channels. IEEE Transactions on Wireless Communications, 5(6), 1229–1233.

    Article  Google Scholar 

  10. Farid, A. A., & Hranilovic, S. (2007). Outage capacity optimization for free-space optical links with pointing errors. Journal of Lightwave Technology, 25(7), 1702–1710.

    Article  Google Scholar 

  11. Popoola, W. O., Ghassemlooy, Z., & Leitgeb, E. (2007). Free-space optical communication using sub carrier modulation in gamma–gamma atmospheric turbulence. In 9th International conference on transparent optical networks (ICTON ’07) Rome Italy (Vol. 3, pp. 156–160).

  12. Li, J., Liu, J. Q., & Taylor, D. P. (2007). Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels. IEEE Transaction on Communications, 55, 1598–1606.

    Article  Google Scholar 

  13. Al-Habash, M. A., Andrews, L. C., & Phillips, R. L. (2001). Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Optical Engineering, 40, 1554–1562.

    Article  Google Scholar 

  14. Henniger, H., & Wilfert, O. (2010). An introduction to free space optical communications. Radio Engineering, 19(2), 203–212.

    Google Scholar 

  15. Barry, J. D., & Mecherle, G. S. (1985). Beam pointing error as a significant parameter for satellite borne, free-space optical communication systems. Optical Engineering, 24(6), 1049–1054.

    Article  Google Scholar 

  16. Chen, C. C., & Gardner, C. S. (1989). Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links. IEEE Transactions on Communications, 37(3), 252–260.

    Article  Google Scholar 

  17. Arnon, S., & Kopeika, N. S. (1997). Laser satellite communication networkvibration effect and possible solutions. Proceedings of the IEEE, 85(10), 1646–1661.

    Article  Google Scholar 

  18. Kolkai, Z., Biolkova, V., & Biolek, D. (2004). Model of atmospheric optical channel with scattering. Latest Trends on Communications, 5(4), 141–144.

    Google Scholar 

  19. Awan, M. S., Horwath, L. C., Muhammad, S. S., Leitgeb, E., Nadeem, F., & Khan, M. S. (2009). Characterization of fog and snow attenuations for free-space optical propagation. Journal of Communications, 4(8), 445–533.

    Article  Google Scholar 

  20. Ketprom, U., Jaruwatanadilok, S., Kuga, Y., Ishimaru, A., & Ritcey, J. A. (2005). Channel modeling for optical wireless communication through dense fog. Journal of Optical Networking, 4(6), 291–299.

    Article  Google Scholar 

  21. Ali, Mazin Ali A. (2013). Characterization of fog attenuation for free space optical communication link. International Journal of Electronics and Communication Engineering & Technology, 4(3), 244–255.

    Google Scholar 

  22. Aharonovich, M., & Arnon, S. (2005). Performance improvement of optical wireless communication through fog with a decision feedback equalizer. Journal of the Optical Society of America A, 22(8), 1646–1654.

    Article  Google Scholar 

  23. Ferdinandov, E., & Mitsev, T. (2003). Link range of free space laser communication system. Microwave Review Journal, 9(2), 41–42.

    Google Scholar 

  24. Ricklin, J. C., Hammel, S. M., Eaton, F. D., & Lachinova, S. L. (2006). Atmospheric channel effects on free-space laser communication. Journal of Optical and Fiber Communications Research, 3, 111–158.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Nabih Zaki Rashed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashed, A.N.Z. Optical Wireless Communication Systems Operation Performance Efficiency Evaluation in the Presence of Different Fog Density Levels and Noise Impact. Wireless Pers Commun 81, 427–444 (2015). https://doi.org/10.1007/s11277-014-2137-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2137-9

Keywords

Navigation