Skip to main content
Log in

BER Analysis for BPSK Based SIM–FSO Communication System Over Strong Atmospheric Turbulence with Spatial Diversity and Pointing Errors

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Free space optical communication (FSO) has much attention in recent years for the applications viz. inter-satellite, deep space communications, inter and intra chip communications. The performance of FSO systems sternly suffers from atmospheric turbulence due to the random nature of weather conditions. Spatial diversity is an emerging technique for improving the performance of the system over strong atmospheric turbulences. In this paper, the error rate performance of binary phase shift keying based subcarrier intensity modulated free space optical (SIM–FSO) communication system over gamma–gamma channel with pointing errors is investigated. Novel closed-form analytical expressions are derived for the average bit error rate of single-input multiple-output FSO (SIMO–FSO) system with various combining schemes. The error rate performance of SISO and SIMO–FSO systems are compared in terms of 2D and 3D plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kedar, D., & Arnon, S. (2004). Urban optical wireless communication networks: The main challenges and possible solutions. IEEE Communications Magazine, 42(5), 2–7.

    Article  Google Scholar 

  2. Gappmair, W., Hranilovic, S., & Leitgeb, E. (2010). Performance of PPM on terrestrial FSO links with turbulence and pointing errors. IEEE Communications Letters, 14(5), 468–470.

    Article  Google Scholar 

  3. Li, J., Liu, J. Q., & Taylor, D. P. (2007). Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels. IEEE Transactions on Communications, 55(8), 1598–1606.

    Article  Google Scholar 

  4. Popoola, W. O., & Ghassemlooy, Z. (2009). BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence. Journal of Lightwave Technology, 27(8), 967–973.

    Article  Google Scholar 

  5. Nistazakis, H. E., Karagianni, E. A., Tsigopoulos, A. D., Fafalios, M. E., & Tombras, G. S. (2009). Average capacity of optical wireless communication systems over atmospheric turbulence channels. Journal of Lightwave Technology, 27(8), 974–979.

    Article  Google Scholar 

  6. Farid, A. A., & Hranilovic, S. (2007). Outage capacity optimization for free-space optical links with pointing errors. Journal of Lightwave technology, 25(7), 1702–1710.

    Article  Google Scholar 

  7. Sandalidis, H. G., Tsiftsis, T. A., & Karagiannidis, G. K. (2009). Optical wireless communications with heterodyne detection over turbulence channels with pointing errors. Journal of Lightwave Technology, 27(20), 4440–4445.

    Article  Google Scholar 

  8. Sandalidis, H. G., Tsiftsis, T. A., Karagiannidis, G. K., & Uysal, M. (2008). BER performance of FSO links over strong atmospheric turbulence channels with pointing errors. IEEE Communications Letters, 12(1), 44–46.

    Article  Google Scholar 

  9. Zhu, X., & Kahn, J. M. (2002). Free-space optical communication through atmospheric turbulence channels. IEEE Transactions on Communications, 50(8), 1293–1300.

    Article  Google Scholar 

  10. Uysal, M., Navidpour, S. M., & Li, J. (2004). Error rate performance of coded free-space optical links over strong turbulence channels. IEEE Communications Letters, 8(10), 635–637.

    Article  Google Scholar 

  11. Zhu, X., & Kahn, J. M. (2003). Performance bounds for coded free-space optical communications through atmospheric turbulence channels. IEEE Transactions on Communications, 51(8), 1233–1239.

    Article  Google Scholar 

  12. Kiasaleh, K. (2005). Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence. IEEE Transactions on Communications, 53(9), 1455–1461.

    Article  Google Scholar 

  13. Kiasaleh, K. (2006). Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence. IEEE Transactions on Communications, 54(4), 604–607.

    Article  Google Scholar 

  14. Tang, X., Ghassemlooy, Z., Rajbhandari, S., Popoola, W. O., & Lee, C. G. (2011). Coherent optical binary polarisation shift keying heterodyne system in the free-space optical turbulence channel. IET Microwaves, Antennas & Propagation, 5(9), 1031–1038.

    Article  Google Scholar 

  15. Betti, S., De Marchis, G., & Iannone, E. (1992). Polarization modulated direct detection optical transmission systems. Journal of Lightwave Technology, 10(12), 1985–1997.

    Article  Google Scholar 

  16. Huang, W., Takayanagi, J., Sakanaka, T., & Nakagawa, M. (1993). Atmospheric optical communication system using subcarrier PSK modulation. IEICE Transactions on Communications, 76(9), 1169–1177.

    Google Scholar 

  17. Bayaki, E., Schober, R., & Mallik, R. K. (2009). Performance analysis of MIMO free-space optical systems in gamma-gamma fading. IEEE Transactions on Communications, 57(11), 3415–3424.

    Article  Google Scholar 

  18. Safari, M., & Hranilovic, S. (2013). Diversity and multiplexing for near-field atmospheric optical communication. IEEE Transactions on Communications, 61(5), 1988–1997.

    Article  Google Scholar 

  19. Lee, E. J., & Chan, V. W. (2004). Part 1: Optical communication over the clear turbulent atmospheric channel using diversity. IEEE Journal on Selected Areas in Communications, 22(9), 1896–1906.

    Article  Google Scholar 

  20. Yazgan, A., & Cavdar, I. H. (2013). The tradeoff between bit error rate and optical link distance using laser phase noise fixing process in coherent optical OFDM systems. Wireless Personal Communications, 68(3), 907–919.

    Article  Google Scholar 

  21. Hajjar, H., Fracasso, B., & Leroux, D. (2013). Fiber-distributed indoor high bitrate optical wireless system. Wireless Personal Communications, 72, 1771–1782.

    Article  Google Scholar 

  22. Barabino, N., & Rodríguez, B. (2013). Performance evaluation of FSO and MMW for the Uruguayan weather conditions. Wireless Personal Communications, 73(3), 1077–1088.

  23. Rashed, A. N. Z., & Sharshar, H. A. (2013). Performance evaluation of short range underwater optical wireless communications for different ocean water types. Wireless Personal Communications, 72(1), 693–708.

  24. Bhatnagar, M. (2013). Differential decoding of SIM DPSK over FSO MIMO links. IEEE Communication Letters, 17(1), 1–4.

    Article  Google Scholar 

  25. Tsiftsis, T. A., Sandalidis, H. G., Karagiannidis, G. K., & Uysal, M. (2009). Optical wireless links with spatial diversity over strong atmospheric turbulence channels. IEEE Transactions on Wireless Communications, 8(2), 951–957.

    Article  Google Scholar 

  26. Andrews, L. C., & Philips, R. L. (2005). Laser beam propagation through random media (2nd ed.). Washington, USA: SPIE Publications.

    Book  Google Scholar 

  27. Lee, I. E., Ghassemlooy, Z., Ng, W. P. & Uysal, M. (2012). Performance analysis of free space optical links over turbulence and misalignment induced fading channels. In Proceedings of the 8th IEEE/IET international symposium on communication systems, networks and digital signal processing (CSNDSP), pp. 1–6.

  28. Prabu, K., Cheepalli, S., & Kumar, D. S. (2014). Analysis of PolSK based FSO system using wavelength and time diversity over strong atmospheric turbulence with pointing errors. Optics Communications, 324, 318–323.

    Article  Google Scholar 

  29. Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1986). Integral and series, vol. 3: More special functions. Amsterdam: Gordon and Breach Science Publishers.

  30. Prabu, K., Bose, S., & Sriram Kumar, D. (2013). BPSK based subcarrier intensity modulated free space optical system in combined strong atmospheric turbulence. Optics Communications, 305, 185–189.

    Article  Google Scholar 

  31. Adamchik, V. S., & Marichev, O. I. (1990). The algorithm for calculating integrals of hyper geometric type functions and its realization in REDUCE system. In Proceedings of international conference on symbolic and algebraic computation Tokyo, Japan, pp. 212–224.

  32. Chiani, M., Dardari, D., & Simon, M. K. (2003). New exponential bounds and approximations for the computation of error probability in fading channels. IEEE Transactions on Wireless Communications, 2(4), 840–845.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Prabu.

Appendices

Appendix 1: Proof of BER of SISO [Eq. (13)]

The probability of average BER expressed by Eq. (12) is reproduced

$$\begin{aligned} P_{e,SISO} =\frac{\alpha \beta \xi ^{2}}{A_0 h_l {\Gamma }(\alpha ){\Gamma }(\beta )}\times \mathop \int \nolimits _0^\infty 0.5 \hbox { erf}c\left( {\frac{h\gamma }{2\sigma _n }} \right) \times G_{1,3}^{3,0} \left[ {\left. {\frac{\alpha \beta h}{A_0 h_l }} \right| _{-1+\xi ^{2},\alpha -1,\beta -1}^{\xi ^{2}} } \right] dh\nonumber \\ \end{aligned}$$
(33)

The complementary error function \(\hbox {erfc}\left( \cdot \right) \) can be expressed as Meijer G function using Eq. (34). Using this identity, Eq. (33) reduces to (35)

$$\begin{aligned} \hbox {erfc}\left( {\sqrt{x}} \right)&= \frac{1}{\sqrt{\pi }}G_{1,2}^{2,0} \left[ {\left. x \right| _{0,1/2}^{1} } \right] \end{aligned}$$
(34)
$$\begin{aligned} P_{e,SISO}&= \frac{\alpha \beta \xi ^{2}}{A_0 h_l {\Gamma }(\alpha ){\Gamma }(\beta )}\times \mathop \int \nolimits _0^\infty \frac{1}{2\sqrt{\pi }}G_{1,2}^{2,0} \left[ {\left. {\frac{\gamma ^{2}h^{2}}{4\sigma _n^2 }} \right| _{0,1/2}^{1} } \right] \nonumber \\&\times G_{1,3}^{3,0} \left[ {\left. {\frac{\alpha \beta h}{A_0 h_l }} \right| _{-1+\xi ^{2},\alpha -1,\beta -1}^{\xi ^{2}} } \right] dh \end{aligned}$$
(35)

By using [31, Eq. (21)] in (35), Eq. (13) can be obtained.

Appendix 2: Proof of BER of SIMO with OC [Eq. (20)]

The strong atmospheric channel model (Eq. (9)) and the average BER of SIMO–FSO with OC (Eq. (19)) are reproduced respectively

$$\begin{aligned} f_{h_n } \left( {h_n } \right)&= \frac{\alpha _n \beta _n \xi _n^2 }{A_{0_n } h_{l_n } {\Gamma }(\alpha _n ){\Gamma }(\beta _n )}G_{1,3}^{3,0} \left[ {\left. {\frac{\alpha _n \beta _n h_n }{A_{0_n } h_{l_n } }} \right| _{-1+\xi _n^2 ,\alpha _n -1,\beta _n -1}^{\xi _n^2 } } \right] \end{aligned}$$
(36)
$$\begin{aligned} P_{e,OC}&\approx \frac{1}{12}\mathop \prod \limits _{n=1}^N \mathop \int \nolimits _0^\infty f_{h_n } \left( {h_n } \right) e^{-\left( {\frac{\gamma ^{2}h_n^2 }{4N\sigma _n^2 }} \right) }dh_n\nonumber \\&+\,\frac{1}{4}\mathop \prod \limits _{n=1}^N \mathop \int \nolimits _0^\infty f_{h_n } \left( {h_n } \right) e^{-\left( {\frac{\gamma ^{2}h_n^2 }{3N\sigma _n^2 }} \right) }dh_n \end{aligned}$$
(37)

By applying Eq. (36) in (37)

$$\begin{aligned} P_{e,OC}&\approx \frac{1}{12}\mathop \prod \limits _{n=1}^N \mathop \int \nolimits _0^\infty \frac{\alpha _n \beta _n \xi _n^2 }{A_{0_n } h_{l_n } {\Gamma }\left( {\alpha _n } \right) {\Gamma }\left( {\beta _n } \right) }G_{1,3}^{3,0} \left[ {\left. {\frac{\alpha _n \beta _n h_n }{A_{0_n } h_{l_n } }} \right| _{-1+\xi _n^2 ,\alpha _n -1,\beta _n -1}^{\xi _n^2 } } \right] e^{-\left( {\frac{\gamma ^{2}h_n^2 }{4N\sigma _n^2 }} \right) }dh_n\nonumber \\&+\,\frac{1}{4}\mathop \prod \limits _{n=1}^N \mathop \int \nolimits _0^\infty \frac{\alpha _n \beta _n \xi _n^2 }{A_{0_n } h_{l_n } {\Gamma }(\alpha _n ){\Gamma }(\beta _n )}G_{1,3}^{3,0} \left[ {\left. {\frac{\alpha _n \beta _n h_n }{A_{0_n } h_{l_n } }} \right| _{-1+\xi _n^2 ,\alpha _n -1,\beta _n -1}^{\xi _n^2 } } \right] e^{-\left( {\frac{\gamma ^{2}h_n^2 }{3N\sigma _n^2 }} \right) }dh_n \nonumber \\ \end{aligned}$$
(38)

An exponential function \(\hbox {exp}\left( \cdot \right) \) can be expressed as Meijer G function using Eq. (39). Using this identity, Eq. (38) can be simplified to (40).

$$\begin{aligned} \hbox {exp}\left( {-x} \right)&= G_{0,1}^{1,0} \left[ {\left. x \right| _{0}^{\cdot } } \right] \end{aligned}$$
(39)
$$\begin{aligned} P_{e,OC}&\approx \frac{1}{12}\mathop \prod \limits _{n=1}^N \frac{\alpha _n \beta _n \xi _n^2 }{A_{0_n } h_{l_n } {\Gamma }\left( {\alpha _n } \right) {\Gamma }\left( {\beta _n } \right) }\mathop \int \nolimits _0^\infty G_{1,3}^{3,0} \left[ {\left. {\frac{\alpha _n \beta _n h_n }{A_{0_n } h_{l_n } }} \right| _{-1+\xi _n^2 ,\alpha _n -1,\beta _n -1}^{\xi _n^2 } } \right] \nonumber \\&\quad \quad G_{0,1}^{1,0} \left[ {\left. {\frac{\gamma ^{2}h_n^2 }{4N\sigma _n^2 }} \right| _{0}^- } \right] dh_n\nonumber \\&+\,\frac{1}{4}\mathop \prod \limits _{n=1}^N \frac{\alpha _n \beta _n \xi _n^2 }{A_{0_n } h_{l_n } {\Gamma }\left( {\alpha _n } \right) {\Gamma }\left( {\beta _n } \right) }\mathop \int \nolimits _0^\infty G_{1,3}^{3,0} \left[ {\left. {\frac{\alpha _n \beta _n h_n }{A_{0_n } h_{l_n } }} \right| _{-1+\xi _n^2 ,\alpha _n -1,\beta _n -1}^{\xi _n^2 } } \right] \nonumber \\&\quad \quad G_{0,1}^{1,0} \left[ {\left. {\frac{\gamma ^{2}h_n^2 }{3N\sigma _n^2 }} \right| _{0}^- } \right] dh_n \end{aligned}$$
(40)

By using [31, Eq. (21)] in (40), Eq. (20) can be obtained.

Appendix 3: Proof of BER with EGC [Eq. (25)]

The average BER of SIMO–FSO with EGC (Eq. (24)) is reproduced

$$\begin{aligned} P_{e,EGC} =0.5\times \mathop \int \nolimits _0^\infty \hbox {erfc}\left( {\frac{\gamma }{2N\sigma _n }\mathop \sum \limits _{n=1}^N h_n } \right) f_h \left( h \right) dh \end{aligned}$$
(41)

By applying Eq. (36) in (41)

$$\begin{aligned} P_{e,EGC}&= 0.5\times \frac{\alpha _n \beta _n \xi _n^2 }{A_{0_n } h_{l_n } {\Gamma }(\alpha _n ){\Gamma }(\beta _n )}\mathop \int \nolimits _0^\infty \hbox {erfc}\left( {\frac{\gamma }{2N\sigma _n }\mathop \sum \limits _{n=1}^N h_n } \right) \nonumber \\&G_{1,3}^{3,0} \left[ {\left. {\frac{\alpha _n \beta _n h_n }{A_{0_n } h_{l_n } }} \right| _{-1+\xi _n^2 ,\alpha _n -1,\beta _n -1}^{\xi _n^2 } } \right] dh_n \end{aligned}$$
(42)

The complementary error function \(\hbox {erfc}\left( \cdot \right) \) can be expressed as Meijer G function using Eq. (34). Using this identity, Eq. (42) reduces to (43).

$$\begin{aligned} P_{e,EGC}&= \frac{\alpha _n \beta _n \xi _n^2 }{2\sqrt{\pi }A_{0_n } h_{l_n } {\Gamma }(\alpha _n ){\Gamma }(\beta _n )}\mathop \prod \limits _{n=1}^N \mathop \int \nolimits _0^\infty G_{1,3}^{3,0} \left[ {\left. {\frac{\alpha _n \beta _n h_n }{A_{0_n } h_{l_n } }} \right| _{-1+\xi _n^2 ,\alpha _n -1,\beta _n -1}^{\xi _n^2 } } \right] \nonumber \\&G_{1,2}^{2,0} \left[ {\left. {\frac{\gamma ^{2}h_n^2 }{4N\sigma _n^2 }} \right| _{0,0.5}^{1} } \right] dh_n \end{aligned}$$
(43)

By using [31, Eq. (21)] in (43), Eq. (25) can be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabu, K., Kumar, D.S. BER Analysis for BPSK Based SIM–FSO Communication System Over Strong Atmospheric Turbulence with Spatial Diversity and Pointing Errors. Wireless Pers Commun 81, 1143–1157 (2015). https://doi.org/10.1007/s11277-014-2176-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2176-2

Keywords

Navigation