Skip to main content
Log in

Requirements Analysis of Dual Band MIMO Antenna

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A compact CPWfed double T-shaped antenna with multiple layer dielectric substrates is proposed for dual-band Wireless Local Area Network (WLAN) operations. For the proposed antenna, the \(-\)10 dB return loss bandwidth could reach about \(28.57\,\%\) for the \(2.45\) GHz band and \(6.15\,\,\%\) for the \(5.2\) GHz band which meet the required bandwidth specification of WLAN standard. To get high isolation and improve the performances of the Multiple-Input–Multiple-Output (MIMO) systems, we suggested using the novel Left Handed Metamaterial with multiple bands called M-band Nested U-Ring Resonator after fractional removal of substrate. An evaluation of MIMO antennas is presented, with analysis of the mutual coupling, correlation coefficient, diversity gain and correlation efficiency. As per results, the proposed solution meets the requirements for practical WLAN applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Emre, T. (1999). Capacity of multi-antenna Gaussian channels. European Transaction on Telecommunication, 10, 585–595.

    Article  Google Scholar 

  2. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space–time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.

    Article  MATH  MathSciNet  Google Scholar 

  3. Stutzman, W. L., & Thiele, G. A. (1998). Antenna theory and design (2nd ed.). New York: Wiley.

    Google Scholar 

  4. Wen, S. (2010). High-gain dual-loop antennas for MIMO access points in the 2.4/5.2/5.8 GHz bands. IEEE Transactions on Antennas and Propagation, 58(7), 2412–2419.

    Article  Google Scholar 

  5. Khaleel, H. R., Al-Rizzo, H. M., Rucker, D. G., Rahmatallah, Y. A., & Mohan, S. (2011). Mutual coupling reduction of dual-band printed monopoles using MNG metamaterial. IEEE international symposium on antennas and propagation, 2219–2222.

  6. Kuo, Y. L., & Wong, K. L. (2003). Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations. IEEE Transactions on Antennas and Propagation, 51(9), 2187–2192.

    Article  Google Scholar 

  7. Hsu, C., Lin, K., Su, H., Lin, H., & Wu, C. (2009). Design of MIMO antennas with strong isolation for portable applications. Antennas and propagation society international symposium, 1–4.

  8. Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Soviet Physics Uspekhi, 10(14), 509–514.

  9. Soukoulis, C. M., Koschny, T., Zhou, J., Kafesaki, M., & Economou, E. N. (2007). Magnetic response of split ring resonators at terahertz frequencies. Physica Status Solidi (b), 244, 1181–1187.

    Article  Google Scholar 

  10. Marqus, R., Mesa, F., Martel, J., & Medina, F. (2003). Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design-theory and experiments. IEEE Transactions on Antennas and Propagation, 51(10), 2572–2581.

  11. Xu, H. X., Wang, G. M., Liu, Q., Wang, J. F., & Gong, J. Q. (2012). A metamaterial with multi-band left handed characteristic. Applied Physics A, 107, 261–268.

    Article  Google Scholar 

  12. Turkmen, O., Ekmekci, E., & Sayan, G. T. (2012). Nested U-ring resonators: A novel multi-band metamaterial design in microwave region. IET Microwaves Antennas and Propagation, 6(10), 1102–1108.

  13. Lin, Y. F., Chen, H. D., & Chen, H. M. (2003). A dual-band printed L-shaped monopole for WLAN applications. Microwave and Optical Technology Letters, 37, 214–216.

  14. Yeh, S. H., & Wong, K. L. (2002). Dual-band F-shaped monopole antenna for 2.4/5.2 GHz WLAN application. In Proceedings IEEE antennas propagation symposium, 72–75.

  15. Song, Y., Jiao, Y. C., Zhao, H., Zhang, Z., Weng, Z. B., & Zhang, F. S. (2008). Compact printed monopole antenna for multiband applications. Microwave and Optical Technology Letters, 50, 365–367.

  16. Liu, W. C. (2005). Broadband dual-frequency cross-shaped slot CPW-fed monopole antenna for WLAN operation. Microwave and Optical Technology Letters, 46, 353–355.

  17. Moghadasi, M. N., Fakhr, R. S., & Danideh, A. (2010). CPW-fed compact slot antenna for WLAN operation in a laptop computer. Microwave and Optical Technology Letters, 52, 1280–1282.

  18. Smith, D. R., Vier, D. C., Koschny, T., & Soukoulis, C. M. (2005). Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 71, 1–11.

    Google Scholar 

  19. Lebrun, S. S. G., & Faulkner, M. (2003). MIMO complexity reduction through antenna selection. Proceedings of the Australian Telecommunications Cooperative Research Centre, 5, 1–5.

  20. Blanch, S., Romeu, J., & Corbella, I. (2003). Exact representation of antenna system diversity performance from input parameter description. Electronics Letters, 39(9), 705–707.

  21. Clarke, R. H. (1968). A statistical theory of mobile reception. Bell Systems Technical Journal, 47, 957–1000.

  22. Hallbjorner, P. (2005). The significance of radiation efficiencies when using S-parameters to calculate the received signal correlation from two antennas. IEEE Antennas and Wireless Propagation Letters, 4(1), 97–99.

  23. Thaysen, J., & Jakobsen, K. B. (2006). Envelope correlation in (N, N) mimo antenna array from scattering parameters. Microwave and Optical Technology Letters, 48(5), 832–834.

  24. Diallo, A., Thuc, P. L., Luxey, C., Staraj, R., Kossiavas, G., Franzn, M., & Kildal, P. S. (2007). Diversity characterization of optimized two-antenna systems for UMTS handsets. Eurasip Journal on Wireless Communications and Networking, 2007, 1–9

  25. Rosengren, K., & Kildal, P. S. (2006). Radiation efficiency, correlation, diversity gain and capacity of a six monopole antenna array for a MIMO system: Theory, simulation and measurement in reverberation chamber. IEE Proceedings Microwaves Antennas and Propagation, 152(1), 7–16.

    Article  Google Scholar 

  26. Manteghi, M., & Samii, Y. R. (2007). A novel miniaturized triband PIFA for MIMO applications. Microwave and Optical Technology Letters, 49(3), 724–731.

  27. Chae, S. H., Oh, S., & Park, S. O. (2007). Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna. IEEE Antennas Wireless Propagation Letters, 6, 122–125.

  28. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communication, 6, 311–355.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belgacem Aouadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouadi, B., Belhadj Tahar, J. Requirements Analysis of Dual Band MIMO Antenna. Wireless Pers Commun 82, 35–45 (2015). https://doi.org/10.1007/s11277-014-2190-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2190-4

Keywords

Navigation