Skip to main content
Log in

Ultra-Wideband \(4\times 4\) Butler Matrix Employing Trapezoidal-Shaped Microstrip-Slot Technique

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A design of compact and inexpensive two-layer ultra-wideband (UWB) \(4~\times ~4\) butler matrix beam-forming network employing trapezoidal-shaped microstrip-slot technique is presented in this paper. The proposed design uses multi-layer technology that allows having compact size and broad bandwidth. The proposed \(4\times 4\) butler matrix configuration consists of four couplers and two phase shifters without using crossovers. Both couplers and phase shifters use trapezoidal-shaped broadside coupled patches and a rectangular slot created in a common ground plane of two Rogers duroid RT5880 dielectric substrates. The simulations and experimental results show a good performance in terms of transmission magnitudes and phases with good return losses and isolation characteristics across the entire UWB frequency range. To demonstrate the functionality of the designed butler matrix, four identical tapered slot antenna (TSA) elements are connected to four output ports of the butler matrix and the radiation pattern characteristics are simulated, presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Beamforming boosts the range and capacity of WiMAX networks, white paper of Fujitsu Microelectronics America Inc (2008).

  2. Blass, J. (1960). Multidirectional antenna—A new approach to stacked beams. IRE international convention record (Vol. 8, pp. 48–50). IEEE.

  3. Lo, Y. T., & Lee, S. W. (1988). Antenna handbook: Theory, applications and design. New York: Van Nostrand Reinhold.

  4. Rotman, W., & Turner, R. (1963). Wide-angle microwave lens for line source applications. IEEE Transactions on Antennas and Propagation, 11(6), 623–632.

    Article  Google Scholar 

  5. Butler, J. (1961). Beam-forming matrix simplifies design of electronically scanned antennas. Electronic Design, 9(8), 170–173.

    Google Scholar 

  6. Nedil, M., Denidni, T. A., & Talbi, L. (2006). Novel Butler matrix using CPW multilayer technology. IEEE Transactions on Microwave Theory and Techniques, 54(1), 499–507.

    Article  Google Scholar 

  7. Ibrahim, S. Z., & Bialkowski, M. E. (2009). Wideband Butler matrix in microstrip-slot technology. Asia Pacific Microwave conference 2009, APMC 2009 (pp. 2104–2107). IEEE.

  8. Haraz, O. M., & Sebak, A. R. (2013). Two-layer butterfly-shaped microstrip \(4\times 4\) Butler matrix for ultra-wideband beam-forming applications. 2013 IEEE International Conference on Ultra-Wideband (ICUWB) (pp. 1–6). IEEE.

  9. Pozar, D. M. (2009). Microwave engineering. Newyork: Wiley.

    Google Scholar 

  10. Tanaka, T., Tsunoda, K., & Aikawa, M. (1988). New slot-coupled directional couplers between double-sided substrate microstrip lines, and their applications. IEEE MTT-S International Microwave Symposium Digest, 1988 (pp. 579–582). IEEE.

  11. Abbosh, A. M., & Bialkowski, M. E. (2007). Design of compact directional couplers for UWB applications. IEEE Transactions on Microwave Theory and Techniques, 55(2), 189–194.

    Article  Google Scholar 

  12. Abbosh, A. M. (2008). Broadband quadrature coupler with slotted ground plane. Microwave and Optical Technology Letters, 50(2), 328–331.

    Article  Google Scholar 

  13. Nedil, M., & Denidni, T. A. (2008). Analysis and design of an ultra wideband directional coupler. Progress in Electromagnetics Research B, 1, 291–305.

    Article  Google Scholar 

  14. Ahmed, O. M., Sebak, A. R., & Denidni, T. A. (2012). A novel butterfly-shaped multilayer backward microstrip hybrid coupler for ultrawideband applications. Microwave and Optical Technology Letters, 54(10), 2231–2237.

    Article  Google Scholar 

  15. Ansoft Corporation, HFSS, v10, Ansoft Corp., (2007).

  16. CST Microwave Studio, ver. 2008, Computer simulation technology, Framingham, MA. (2008).

  17. Schaubert, D. H., Kollberg, E. L., Korzeniowski, T., Thungren, T., Johansson, J., & Yngvesson, K. S. (1985). Endfire tapered slot antennas on dielectric substrates. IEEE Transactions on Antennas and Propagation, 33(12), 1392–1400.

  18. Hilberg, W. (1969). From approximations to exact relations for characteristic impedances. IEEE Transactions on Microwave Theory and Techniques, 17(5), 259–265.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by King AbdulAziz City for Science and Technology (KACST) Technology Innovation Center in RFTONICS hosted at King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama Mohamed Haraz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haraz, O.M., Sebak, AR. & Alshebeili, S.A. Ultra-Wideband \(4\times 4\) Butler Matrix Employing Trapezoidal-Shaped Microstrip-Slot Technique. Wireless Pers Commun 82, 709–721 (2015). https://doi.org/10.1007/s11277-014-2248-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2248-3

Keywords

Navigation