Skip to main content
Log in

Design of Efficient Adaptive Predistorter for Nonlinear High Power Amplifier

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents a digital predistorter to linearize the High Power Amplifier (HPA) with memory effect. The proposed predistorter is based on the approach of Multi-Level 2D LUT based model that compensate the HPA distortion based on memory and non-linearity. The Multi-Level approach utilized in the proposed system eliminates the trade-off between accuracy and adaptation speed. The proposed model is validated by utilizing the Orthogonal Frequency Division Multiplexing of Digital Video Broadcasting-Terrestrial. The Matlab realization of the proposed system show 33X–35X faster convergence time than predistorter based on conventional 2D-LUT model with same adaptation step and memory size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Digital Audio Broadcasting (DAB). (2001). Guidelines and rules for implementation and operation: Part I, II and III. ETSI TR 101 Technical report, 496–1, 2, 3 (1.1.1).

  2. Digital Video Broadcasting (DVB). (2004). Implementation guidelines for DVB terrestrial services: Transmission aspects. ETSI TR 101Technical report, 190 (1.2.1).

  3. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems. Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, IEEE 802.16e-2005Technical report, (2005).

  4. Tellado, J. (1999). Peak-to-average power reduction, Ph.D. thesis, Stanford University.

  5. Jayalath, A. D. S., & Tellambura, C. (2005). SLM and PTS peak-power reduction of OFDM signals without side information. IEEE Transactions on Wireless Communications, 4(5), 2006–2013.

    Article  Google Scholar 

  6. Breiling, M., Muller-Weinfurtner, S. H., & Huber, J. B. (2001). SLM peak power reduction without explicit side information. IEEE Communications Letters, 5(6), 239–241.

    Article  Google Scholar 

  7. Jayalath, A. D. S., & Tellambura, C. (2000). Reducing the peak-to-average power ratio of orthogonal frequency division multiplexing signal through bit or symbol interleaving. IEE Electronics Letters, 36(13), 1161–1163.

    Article  Google Scholar 

  8. Fischer, R. F. H., & Siegl, C. (2009). Reed-Solomon and simplex codes for peak-to-average power ratio reduction in OFDM. IEEE Transactions on Information Theory, 55(4), 1519–1528.

    Article  MathSciNet  Google Scholar 

  9. Jiménez, V. P. G., Fernández-Getino García, M. J., Sánchez Fernández, M. P., & Armada, A. G. (2008). Efficient implementation of complementary Golay sequences for PAR reduction and forward error correction in OFDM-based WLAN systems. AEÜ-International Journal of Electronics Communications, 62(9), 683–694.

    Article  Google Scholar 

  10. Li, X., & Cimini, L. J. (1998). Effect of clipping and filtering on the performance of OFDM. IEEE Communications Letters, 2(5), 131–133.

    Article  MATH  Google Scholar 

  11. Jabrane, Y., Jiménez, V. P. G., Armada, A. G., Ait Es Said, B., & Ait Ouahman, A., (2009). Reduction of the envelope fluctuations of multi-carrier modulations using neural fuzzy systems. IEEE Transactions on Communications, 59(1), 19–25

  12. Wilich, D., Dinur, N., & Glinowiecki, A. (2000). Level clipped high-order OFDM. IEEE Transactions on Communications, 48(6), 928–930.

    Article  Google Scholar 

  13. Swaminathan, J. N., Kumar, P., & Vinoth, M. (2012). Performance Analysis of LMS filter in SSPA linearization in different modulation conditions. In Elsevier conference proceedings ICECIT.

  14. Swaminathan, J. N., Kumar, P., & Vinoth, M. (2012). Performance analysis of LMS filter in linearization of different memoryless non linear power amplifier models. In Springer conference proceedings ICAC3.

  15. Swaminathan, J. N., & Kumar, P. (2013). Design and linearization of solid state power amplifier using pre-distortion technique. In IEEE conference proceedings ICCCI.

  16. Aburakhia, S. A., Badran, E. F., & Mohamed, D. A. E. (2009). Linear companding transform for the reduction of peak-to-average power ratio of OFDM signals. IEEE Transactions on Broadcasting, 55(1), 155–160.

    Article  Google Scholar 

  17. Bo, A., Zhi-xing, Y., Chang-yong, P., Tao-tao, Z., & Jian-hua, G. (2005). Effects of PAPR reduction on HPA predistortion. IEEE Transactions on Consumer Electronics, 51(1), 1143–1147.

    Article  Google Scholar 

  18. Li, J., & Ilow, J. (2006). Adaptive Volterra predistorters for compensation of non-linear effects with memory in OFDM transmitters. In Proceedings of IEEE 4th annual communications and networks services research conference (CNSR), pp. 103–106.

  19. Chen, H.-H., Lin, C.-H., Huang, P.-C., & Chen, J.-T. (2006). “Joint polynomial and look-up-table predistortion power amplifier linearization”, IEEE Trans. Circuits Systems II: Express Briefs, 53(8), 612– 616.

    Article  Google Scholar 

  20. Wang, T., & Ilow, J. (2004). Compensation of nonlinear distortions with memory effects in OFDM transmitters, In Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Dallas, Tex, USA, Dec. 4, 2398–2403.

  21. Cheong, M. Y., Aschbacher, E., Brunmayr, P., & Laakso, T. (2005). Comparison and experimental verification of two low-complex digital predistortion methods. In 39th Asilomar conference on signals, systems and computers.

  22. Yu, C., Liu, Y., & Li, S. (2009). Triangular memory polynomial predistorter, In Proceedings of 5th international conference on wireless communcations and networks, mobile computing. (WiCom), pp. 1–4.

  23. Ding, L., Zhou, G. T., Morgan, D. R., Ma, Z., Kenney, J. S., Kim, J., et al. (2004). A robust digital baseband predistorter constructed using memory polynomials. IEEE Transactions on Communications, 52(1), 159–165.

    Article  Google Scholar 

  24. Nguyen, T. M., Yoh, J., Lee, C. H., Tran, H. T., & Johnson, D. M. (2003). Modeling of HPA and HPA linearization through a predistorter: Global broadcasting service applications. IEEE Transaction on Broadcasting, 49(2), 132–141.

    Article  Google Scholar 

  25. Wesolowski, K. (2005). A novel fast HPA predistorter for high PAPR signals, In Proceedings of IEEE 16th international symposium on Pers., indoor, mobile radio communications (PIMRC) (pp. 863–867). Berlin.

  26. Lei, D., Raich, R., & Zhou, G. T. (2002). A Hammerstein predistortion linearization design based on the indirect learning architecture. In IEEE international conference on acoustics, speech, and signal processing, p. III.

  27. Rawat, M., Rawat, K., & Ghannouchi, F. M. (2010). Adaptive digital predistortion of wireless power amplifier/transmitters using dynamic real-valued focused time-delay line neural networks. IEEE Transactions on Microwave Theory and Techniques, 58(1), 95–104.

    Article  Google Scholar 

  28. Hao, L., Hyan, K. D., Deming, C., & Yun, C. (2009). A fast digital predistortion algorithm for radio-frequency power amplifier linearization with loop delay compensation. IEEE Journal of Selected Topics in Signal Processing, 3(3), 374–383.

    Article  Google Scholar 

  29. He, Z-y, Ge, J-h, Geng, S-j, & Wang, G. (2006). An improved look-up table predistortion technique for HPA with memory effects in OFDM systems. IEEE Transactions on Broadcasting, 52(1), 87–91.

    Article  Google Scholar 

  30. Lei, D., Zhou, G. T., Morgan, D. R., Zhengxiang, M., Kenney, J. S., Jaehyeong, K., et al. (2004). A robust digital baseband predistorter constructed using memory polynomials. IEEE Transactions on Communications, 52(1), 159–195.

    Article  Google Scholar 

  31. Saleh, A. (1981). Frequency-Independent and Frequency-Dependent Nonlinear Models of TWT Amplifiers. IEEE Transactions on Communications, 29(11), 1715–1720.

    Article  Google Scholar 

  32. Cavers, J. K. (1990). Amplifier linearization using a digital pre-distorter with fast adaptation and low memory requirements. IEEE Transactions on Vehicular Technology, 39(4), 374–382.

    Article  Google Scholar 

  33. Rapp, A. (1991). Effects of HPA-nonlinearity on a 4-Dpsk/OFDM-signal for a digital sound broadcasting system. In Proceedings of 2nd European conference on satellite communications, Liege, Belgium, Vol. 2, pp. 179–184.

  34. ETSI, E. (2009–2011). Digital Video Broadcasting (DVB), framing structure, channel coding and modulation for digital terrestrial television, ETSI EN 300 744 VI. 6.1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Swaminathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swaminathan, J.N., Kumar, P. Design of Efficient Adaptive Predistorter for Nonlinear High Power Amplifier. Wireless Pers Commun 82, 1085–1093 (2015). https://doi.org/10.1007/s11277-014-2267-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2267-0

Keywords

Navigation