Skip to main content
Log in

Time-Varying Doppler Frequency Offset Estimation Method for LTE-TDD Uplink with Multi-user in HST Scenario

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A time-varying Doppler frequency offset estimation method is proposed for the high-speed-train travelling over 350 km/h ground speed in the long term evolution-time division duplex (LTE-TDD) uplink with the multi-user. Based on the separated pilot symbols of each user, the single pilot symbol in one subframe is firstly segmented into halves to enlarge the estimation range, and then the cross correlation of the two pilot symbols in one subframe is employed to improve the estimation accuracy. To further improve the estimation accuracy, the autoregressive model is used to track the variation of the Doppler frequency offsets between the subframes. Simulation results show that the performance of the proposed method is much better than those of the available methods for the LTE-TDD uplink with the high-speed mobile multi-user, and it has a low computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. 3GPP. (2009). Evolved universal terrestrial radio access (E-UTRA); physical Channels and modulation, TS 36.211, v8.6.0.

  2. Lin, J. S., & Chen, C. C. (2005). Hybrid maximum likelihood frequency offset estimation in coherent OFDM systems. IET Communications, 152(5), 587–592.

    Google Scholar 

  3. Kapoor, S., Marchok, D. J., & Huang, E. F. (1998). Pilot assisted synchronization for wireless OFDM systems over fast time varying fading channels. In IEEE vehicular technology conference (pp. 2077–2080), Ottawa, Canada.

  4. Liu, S. Y., & Chong, J. W. (2002). A study of joint tracking algorithms of carrier frequency offset and sampling clock offset for OFDM-based WLANs. In IEEE international conference on communications, circuits and systems and west sino expositions (pp. 109–113), Chengdou, China.

  5. Cheon, H. (2007). Frequency offset estimation for high speed users in E-UTRA uplink. In IEEE international symposium on personal, indoor and mobile radio communications (pp. 1–5), Athens, Greece.

  6. Ni, H., Ren, G. L., Bai, Y., & Chang, Y. L. (2010). Frequency offset estimation in LTE uplink high speed train scenarios. Journal of Shanghai Jiaotong University (Science), 44(9), 1235–1240.

    Google Scholar 

  7. Bertrand, P. (2010). Frequency offset estimation in 3G LTE. In IEEE vehicular technology conference (VTC 2010-Spring) (pp. 1–5).

  8. 3GPP TSG-RAN4-41-R4-061161. (2006). Proposed scenarios for high speed train requirements.

  9. 3GPP TSG-RAN4-42-R4-070066. (2007). Way forward on high speed train.

  10. 3GPP TSG-RAN4-43-R4-070767. (2007). Revised RACH demodulation results under high speed train scenarios.

  11. 3GPP TSG-RAN4-43-R4-070806. (2007). BS perforamnce requirements for high speed train.

  12. 3GPP TSG-RAN4-43bis-R4-070994. (2007). LTE channel models: High speed scenario.

  13. 3GPP TSG-RAN4-44bis-R4-071675, TP36.803. (2007). High speed train model.

  14. Talbot, S., & Farhang-Boroujeny, B. (2009). Time-varying carrier offsets in mobile OFDM. IEEE Transactions on Communications, 57(9), 2790–2798.

    Article  Google Scholar 

  15. Yang, L. H., Ren, G. L., & Qiu, Z. L. (2012). A novel Doppler frequency offset estimation method for DVB-T system in HST environment. IEEE Transactions on Broadcasting, 58(1), 139–143.

    Article  Google Scholar 

  16. Yang, L. H., Ren, G. L., Yang, B. K., & Qiu, Z. L. (2012). Fast time-varying channel estimation technique for LTE uplink in HST environment. IEEE Transactions on Vehicular Technology, 61(9), 4009–4019.

    Article  Google Scholar 

  17. Ren, G. L., Chang, Y. L., & Zhang, H. N. (2007). An efficient frequency offset estimation method with a large range for wireless OFDM systems. IEEE Transactions on Vehicular Technology, 56(4), 1892–1895.

    Article  Google Scholar 

  18. Moose, P. H. (1994). A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Transactions Communications, 42(10), 2908–2914.

    Article  Google Scholar 

  19. Yang, L. H., Ren, G. L., & Qiu, Z. L. (2011). Frequency synchronization scheme for LTE downlink in cell handover of HST environment. In IEEE international conference on wireless communications and signal processing (WCSP) (pp. 1–5).

  20. Meyr, H. (1998). Digital communication receivers: Synchronization, channel estimation and signal processing. New York: Wiley.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by 973 Program of China (2013CB329104), and 863 Program of China (2014AA01A705), the National Natural Science Foundation of China (61401232), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (14KJB510026), the National Science and Technology Major Project (2011ZX03001-007-01), and Nanjing University of Posts and Telecommunications Project (NY213013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Yang.

Appendix

Appendix

In the section, the derivation of the MSE lower bound is given by [18, 19]. For received signal via the AWGN channel with the time-varying frequency offset, one can define \(B^{(u,q)}_{j}(n)\) as

$$\begin{aligned} B^{(u,q)}_{j}(n)&= \bar{\bar{\gamma }}^{(u)*}_{j}(3,n) \bar{\bar{\gamma }}^{(u)}_{j}(10,n) \nonumber \\&= e^{j14\pi \triangle \varepsilon ^{(u)}_{j}/N_{D}}p^{ (u)*}_{j}(3,n)p^{(u)}_{j}(10,n)+\dot{w}^{(u)}_{j}(n) \nonumber \\&= e^{j14\pi \triangle \varepsilon ^{(u)}_{j}/N_{D}}|p^{(u)*}_{j}(3,n)|^{2}+\dot{w}^{(u)}_{j}(n) \end{aligned}$$
(28)

where \(n=0,\ldots ,N_{D}-1\), and assume that the two pilot symbols are the same, i.e, \(p^{(u)}_{j}(3,n)=p^{(u)}_{j}(10,n)\). The products of two noise terms in (28) can be negligible, so the \(\dot{w}^{(u)}_{j}(n)\) can be written as

$$\begin{aligned} \dot{w}_j^{(u)}(n)&= \tilde{w}_j^{(u)*}(3,n)p_j^{(u)}(10,n){e^{j2\pi \vartriangle \varepsilon _j^{(u)}(10N - {N_D} + n)/{N_D}}} \nonumber \\&\quad + \tilde{w}_j^{(u)}(10,n)p_j^{(u)*}(3,n){e^{ - j2\pi \vartriangle \varepsilon _j^{(u)}(3N - {N_D} + n)/{N_D}}} \end{aligned}$$
(29)

From (28), denoting \(\beta =exp[-j14\pi \triangle \hat{\varepsilon }^{(u)}_{j,2}/N_{D}]\), we obtain

$$\begin{aligned} tan\biggl [\frac{14\pi }{N_{D}}(\triangle \varepsilon ^{(u)}_{j}-\triangle \hat{\varepsilon }^{(u)}_{j,2})\biggr ]&\approx \frac{\mathfrak {I}\biggl (B^{(u,q)}_{j}(n)\beta \biggr )}{\mathfrak {R}\biggl (B^{(u,q)} _{j}(n)\beta \biggr )}\nonumber \\&\approx \frac{14\pi }{N_{D}}\biggl (\triangle \varepsilon ^{(u)}_{j} -\triangle \hat{\varepsilon }^{(u)}_{j,2}\biggr ) \end{aligned}$$
(30)

Substituting (28) into (30), it follows that

$$\begin{aligned} e^{(u)}_{j}&= \triangle \varepsilon ^{(u)}_{j}-\triangle \hat{\varepsilon }^{(u)} _{j,2}\nonumber \\&= \frac{N_{D}}{14\pi N}\frac{\mathfrak {I}\biggl (B^{(u,q)}_{j}(n)\beta \biggr )}{\mathfrak {R}\biggl (B^{(u,q)}_{j}(n)\beta \biggr )} \nonumber \\&= \frac{N_{D}}{14\pi N}\frac{\mathfrak {I}\biggl (\dot{w}^{(u)}_{j}(n)\beta \biggr )}{|p^{(u)}_{j}(3,n)|^{2}+\mathfrak {R}\biggl (\dot{w}^{(u)}_{j}(n) \beta \biggr )} \end{aligned}$$
(31)

At the high signal-to-noise ratios, a condition compatible with successful communications signaling, (31) may be approximated by

$$\begin{aligned} e^{(u)}_{j}\approx \frac{N_{D}}{14\pi N}\frac{\mathfrak {I}\biggl (\dot{w}^{(u)}_{j}(n)\beta \biggr )}{|p^{(u)}_{j}(3,n)|^{2}} \end{aligned}$$
(32)

For the separated user with multi-user interference, only \(N_{ca}\) subcarriers is used to transmit the signal in the frequency domain, so the average power of the pilot in the time-domain, i.e., \(\sum _{n=0}^{N_{D}-1}|p^{(u)}_{j}(i,n)|^{2},i=3,10\), is approximately \(N_{ca}\). Therefore, the variance of fine estimation can be obtained after some straightforward calculations

$$\begin{aligned} var\biggl (\triangle \hat{\varepsilon }^{(u)}_{j,2}\biggr )\approx \biggl (\frac{N_{D}}{14\pi N}\biggr )^{2}\frac{1}{N_{ca}SNR} \end{aligned}$$
(33)

where \(\textit{SNR}=1/\sigma ^{2}_{w}\).

From (32), after some manipulations, one can find that the frequency offset estimation noise \(e^{(u)}_{j}=\triangle \varepsilon ^{(u)}_{j}-\triangle \hat{\varepsilon }^{(u)}_{j,2}\) has the following autocorrelation

$$\begin{aligned} R^{(u,e)}_{j}(l)&= E[e^{(u)}_{j}e^{(u)}_{j+l}] \nonumber \\&= \left\{ \begin{array}{l@{\quad }l} \biggl (\frac{N_{D}}{14\pi N}\biggr )^{2}\frac{1}{N_{ca}SNR},&{}\quad l=0 \\ 0,&{}\quad \textit{otherwise} \end{array} \right. \end{aligned}$$
(34)

Thus, the power spectral density (PSD) of loop noise is given by

$$\begin{aligned} P(f)&= T\sum _{l}R^{(u,e)}_{j}(l)e^{-j2\pi lfT} \nonumber \\&= \biggl (\frac{N_{D}}{14\pi N}\biggr )^{2}\frac{T}{N_{ca}SNR} \end{aligned}$$
(35)

Based on a linearized equivalent model [20], we can derive the tracking performance as

$$\begin{aligned} \textit{MSE}=\int _{-\frac{1}{2T}}^{\frac{1}{2T}}P^{(u)}_{j}(f)|G(f)|^{2}df \end{aligned}$$
(36)

where \(G(f)\) is the closed-loop transfer function given by

$$\begin{aligned} G(f)=-\frac{\rho }{e^{j2\pi fT}-(1-\rho )} \end{aligned}$$
(37)

where \(T=T_{g}+T_{u}\), \(T_{g}\) and \(T_{u}\) are the length of the CP and FFT respectively. Therefore, the MSE is

$$\begin{aligned} \textit{MSE}&= \biggl (\frac{N_{D}}{14\pi N}\biggr )^{2}\frac{T}{N_{ca}SNR} \int _{-\frac{1}{2T}}^{\frac{1}{2T}}|-\frac{\rho }{e^{j2\pi fT}-(1-\alpha )}|^{2}df \nonumber \\&= \biggl (\frac{N_{D}}{14\pi N}\biggr )^{2}\frac{T}{N_{ca}SNR}\int _{-\frac{1}{2T}}^ {\frac{1}{2T}}\frac{1}{(1-\rho )^2+1-2(1-\rho )cos2\pi fT}df \nonumber \\&= \biggl (\frac{N_{D}}{14\pi N}\biggr )^{2}\frac{T}{N_{ca}SNR}\int _{-\frac{1}{2T}}^{\frac{1}{2T}} \frac{1}{2(1-cos2\pi fT)(1-\rho )+\rho ^{2}}df \nonumber \\&= \biggl (\frac{N_{D}}{14\pi N}\biggr )^{2}\frac{T}{N_{ca}SNR} \int _{-\frac{1}{2\pi }}^{\frac{1}{2\pi }}\frac{1}{tan^{2}\theta +(\frac{\rho }{2-\rho })^2}d\theta \nonumber \\&= \biggl (\frac{N_{D}}{14\pi N}\biggr )^{2}\frac{\frac{\rho }{(2-\rho )}}{N_{ca}SNR} \end{aligned}$$
(38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Yang, L., Zhu, H. et al. Time-Varying Doppler Frequency Offset Estimation Method for LTE-TDD Uplink with Multi-user in HST Scenario. Wireless Pers Commun 82, 1127–1146 (2015). https://doi.org/10.1007/s11277-014-2270-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2270-5

Keywords

Navigation