Skip to main content
Log in

A Self Training Approach to Automatic Modulation Classification Based on Semi-supervised Online Passive Aggressive Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Automatic classification of modulation type in detected signals is an intermediate step between channel equalization and signal demodulation. This subsystem is an essential task for an intelligent receiver in various civil and military applications. Most of automatic modulation classification algorithms have been evaluated in SNR aware case which is obviously an unrealistic case. In this paper, we propose a semi-supervised online passive-aggressive classifier that uses a self-training approach for additive white Gaussian noise channels with unknown or variable signal to noise ratios to classify the modulated signals. An appropriate set of selected feature helps the general system work for a set of initial samples of each class. In the adaptation phase, unlabeled high confidence samples are used to adapt to system. An appropriate confidence measure is proposed to collect confident samples. Simulation results shows that adding unlabeled input samples to the training set improve the generalization capacity of the presented classifier in the target SNR. In addition to online characteristics of the algorithm that make the approach suitable for cognitive radio systems, this algorithm converges with a few number of signal samples. Simulation results in SNR unaware conditions show that employing this learning method results in high classification rate close to SNR aware conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dobre, O. A., Abdi, A., Bar-Ness, Y., & Su, W. (2007). Survey of automatic modulation classification techniques: Classical approaches and new trends. IET Communications, 1(2), 137–156.

    Article  Google Scholar 

  2. Wu, H. C., Saquib, M., & Yun, Z. (2008). Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Transactions Wireless Communications, 7(8), 3089–3105.

    Google Scholar 

  3. Prakasam, P., & Madheswaran, M. (2009). Intelligent decision making system for digital modulation scheme classification in software radio using wavelet transform and higher order statistical moments. Wireless Personal Communications, 50(4), 509–528.

    Article  Google Scholar 

  4. Hsue, S. Z., & Soliman, S. S. (1990). Automatic modulation classification using zero crossing. IEE Proceedings for Radar and Signal Processing, 137(6), 459–464.

    Article  Google Scholar 

  5. Mobasseri, B. G. (2000). Digital modulation classification using constellation shape. Signal Processing, 80(2), 251–277.

    Article  MATH  Google Scholar 

  6. Azzouz, E. E., & Nandi, A. K. (1995). Automatic identification of digital modulation types. Signal Processing, 47(1), 55–69.

    Article  MATH  Google Scholar 

  7. Nandi, A. K., & Azzouz, E. E. (1998). Algorithms for automatic modulation recognition of communication signals. IEEE Transactions on Communications, 46(4), 431–436.

    Article  Google Scholar 

  8. Swami, A., & Sadler, B. M. (2000). Hierarchical digital modulation classification using cumulants. IEEE Transactions on Communications, 48(3), 416–429.

    Article  Google Scholar 

  9. Zhao, Y., Ren, G., Wang, X., Wu, Z., & Gu, X. (2003). Automatic digital modulation recognition using artificial neural networks. In: Proceedings of ICNNSP, pp. 257–260.

  10. Wang, F., & Wang, X. (2010). Fast and robust modulation classification via Kolmogorov–Smirnov Test. IEEE Transactions on Communications, 58(8), 2324–2332.

    Article  Google Scholar 

  11. Zhao, C., & Yang, W. (2013). Modulation Recognition of MFSK signals based on multifractal spectrum. Wireless Personal Communications, 72, 1903–1914.

    Article  Google Scholar 

  12. Zhu, Z., Aslam, M. W., & Nandi, A. K. (2013). Genetic algorithm optimized distribution sampling test for M-QAM modulation classification. Signal Processing, 94, 264–277.

    Article  Google Scholar 

  13. Zadeh, A. E. (2010). Automatic recognition of radio signals using a hybrid intelligent technique. Expert Systems with Applications, 37(8), 5803–5812.

    Article  Google Scholar 

  14. Sengur, A. (2009). Multiclass least-squares support vector machines for analog modulation classification. Expert Systems with Applications, 36(3), 6681–6685.

    Article  Google Scholar 

  15. Dulek, B., Ozdemir, O., Varshney, P. K., & Su, W. (2014). A novel approach to dictionary construction for automatic modulation classification. Journal of the Franklin Institute, 351(5), 2991–3012.

    Article  MathSciNet  Google Scholar 

  16. Adankon, M. M., & Cheriet, M. (2011). Help-training for semi-supervised support vector machines. Pattern Recognition, 44(1), 2220–2230.

    Article  Google Scholar 

  17. Zhu, X. (2008). Semi-supervised learning literature survey, Technical Report 1530. Computer Sciences, University of Wisconsin-Madison.

  18. Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Morgan and Claypool Publishers.

  19. Chapelle, O., Scholkopf, B., & Zien, A. (2006). Semi-supervised learning. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  20. Seeger, M. (2001). Learning with labeled and unlabeled data. Technical Report, Institute for Adaptive and neural Computation, University of Edinburgh.

  21. Hosseinzadeh, H., Razzazi, F., & Haghbin, A. (2012). An Adaptable Architecture for Blind Modulations Classification in Variable SNR Environments. In: Proceedings of IEEE International Conference on Intelligent systems, 1, pp. 164–169.

  22. Li, Y., & Long, P. M. (2002). The relaxed online maximum margin algorithm. Machine Learning, 46, 361–387.

    Article  MATH  Google Scholar 

  23. Gentile, C. (2001). A new approximate maximal margin classification algorithm. Journal of Machine Learning Research, 2, 213–242.

    MathSciNet  Google Scholar 

  24. Kivinen, J., Smola, A. J., & Williamson, R. C. (2002). Online learning with kernels. IEEE Transactions Signal Processing, 52, 2165–2176.

    Article  MathSciNet  Google Scholar 

  25. Orabona, F., Castellini, C., Caputo, B., Jie, L., & Sandini, (2010). On-line independent support vector machines. Pattern Recognition, 43, 1402–1412.

    Article  MATH  Google Scholar 

  26. Crammer, K., Dekel, O., Keshet, J., Shalev-shwartz, S., & Singer, Y. (2006). Online passive-aggressive algorithms. Journal of Machine Learning Research, 7, 551–585.

    MATH  MathSciNet  Google Scholar 

  27. Chang, C.C., Lee, Y.J., & Pao, H.K. (2010). A Passive-Aggressive Algorithm for Semi-supervised Learning. In: Proceedings of International Conference on Technologies and Applications of Artificial Intelligence, pp. 335–341.

  28. Schapire, R. E. & Singer, Y. (1998). Improved boosting algorithms using confidence-rated predictions. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 80–91.

  29. Crammer, K., & Singer, Y. (2003). A new family of online algorithms for category ranking. Journal of Machine Learning Research, 3, 1025–1058.

  30. Maulic, U., & Chakraborty, D. (2011). A self-trained ensemble with semisupervised SVM: An application to pixel classification of remote sensing imagery. Pattern Recognition, 24, 615–623.

    Article  Google Scholar 

  31. Proakis, J. G. (2001). Digital Communications. New York: McGraw-Hill.

    Google Scholar 

  32. Burges, C. C. (1998). A tutorial on support vector machines for pattern recognition. In: Proceedings of International Conference on Data Mining and Knowledge Discovery, 2, pp. 121–167.

  33. Lopatka, J., & Macrej, P. (2000). Automatic modulation classification using statistical moments and a fuzzy classifier. In: Proceedings of International Conference on Signal Processing (ICSP’00), pp. 1500–1506.

  34. Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers and Electrical Engineering, 40(1), 16–28.

    Article  Google Scholar 

  35. Ebrahimzade, A. (2012). A novel method for automatic modulation recognition. Applied Soft Computing, 12, 453–461.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farbod Razzazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, H., Razzazi, F. & Haghbin, A. A Self Training Approach to Automatic Modulation Classification Based on Semi-supervised Online Passive Aggressive Algorithm. Wireless Pers Commun 82, 1303–1319 (2015). https://doi.org/10.1007/s11277-015-2284-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2284-7

Keywords

Navigation