Skip to main content
Log in

A New Statistical WRELAX Algorithm Under Nakagami Multipath Channel Based on Delay Power Spectrum Characteristic

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Multipath delay estimation plays an important role in wireless channel estimation, equalization, and synchronization. Weighted Fourier transform and relaxation (WRELAX) algorithm is frequently used for its high resolution and good convergence property. However, the WRELAX algorithm is prone to false estimated delays and irregular multipath sorting under Nakagami-based multipath channel, which is a more practical model than the traditional Rice or Rayleigh-based multipath model, because of the oscillatory cost function property between the received and the known transmitted signals. Given relatively stable characteristics and delay power spectrum distribution characteristics of the wireless channel, together with the principle that the statistical probability of the true estimated delays is larger than that of the false ones through statistical detection, this study proposes a delay power spectrum characteristic-based statistical WRELAX time delay estimation algorithm. The improved algorithm excludes false estimated paths and sorts the delays in size order simultaneously by establishing a two-dimensional relation graph composed of the superposition value of estimated attenuation coefficient and their response-estimated delays. Simulation under three typical Nakagami-based slow fading multipath channels shows that the proposed algorithm has good accuracy and robustness, and the cost of complexity increased by only a few times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pätzold, M. (2012). Mobile radio channels (2nd ed.). Chichester: Wiley.

    Google Scholar 

  2. Filho, J. C. S. S., & Yacoub, M. D. (2009). On the simulation and correlation properties of phase-envelope Nakagami fading processes. IEEE Transactions on Communications, 57(4), 906–909. doi:10.1109/TCOMM.2009.04.070195.

    Article  Google Scholar 

  3. Qu, B., Wei, J., Tang, Z., Yan, T., & Zhou, Z. (2014). Analysis of combined effects of multipath and CW interference on coherent delay lock loop. Wireless Personal Communications, 77(3), 2213–2233. doi:10.1007/s11277-014-1634-1.

    Article  Google Scholar 

  4. Shang, F., Champagne, B., & Psaromiligkos, I. (2013). Time of arrival and power delay profile estimation for IR-UWB systems. Signal Processing, 93(5), 1317–1327. doi:10.1016/j.sigpro.2012.11.006.

    Article  Google Scholar 

  5. Verteletskaya, E., Sakhnov, K., & ŠIMÁK, B. (2012). Delay estimator and improved proportionate multi-delay adaptive filtering algorithm. Radioengineering, 21(1), 182–189.

  6. Trivedi, A., & Gupta, R. (2010). Improved ML channel estimation for uplink MC-CDMA systems in closely spaced multipath channels. Wireless Personal Communications, 52(2), 341–357. doi:10.1007/s11277-008-9651-6.

    Article  Google Scholar 

  7. Xie, S., Hu, A., & Huang, Y. (2012). Time-delay estimation in the multi-path channel based on maximum likelihood criterion. KSII Transactions on Internet and Information Systems, 6(4), 1063–1075.

    Google Scholar 

  8. Bhardwaj, T. P., & Nath, R. (2010). Maximum likelihood estimation of time delays in multipath acoustic channel. Signal Processing, 90(5), 1750–1754. doi:10.1016/j.sigpro.2009.11.023.

    Article  MATH  Google Scholar 

  9. Li, W., & Preisig, J. C. (2007). Estimation of rapidly time-varying sparse channels. IEEE Journal of Oceanic Engineering, 32(4), 927–939. doi:10.1109/joe.2007.906409.

    Article  Google Scholar 

  10. Min, Y., Ping, W., Xian-Ci, X., & Heng-Ming, T. (2003). Efficient EM initialisation method for time delay estimation. Electronics Letters, 39(12), 935–936. doi:10.1049/el:20030624.

    Article  Google Scholar 

  11. Oziewicz, M. (2005). On application of MUSIC algorithm to time delay estimation in OFDM channels. IEEE Transactions on Broadcasting, 51(2), 249–255. doi:10.1109/tbc.2005.846193.

    Article  Google Scholar 

  12. Feng-Xiang, G., Dongxu, S., Yingning, P., & Li, V. O. K. (2007). Super-resolution time delay estimation in multipath environments. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(9), 1977–1986. doi:10.1109/tcsi.2007.904693.

    Article  Google Scholar 

  13. Jian, L., Renbiao, W., & Zheng-She, L. (1998). Efficient super resolution time delay estimation techniques. In Proceedings of the 1998 IEEE international conference on acoustics, speech and signal processing, 12–15 May 1998 (vol. 4, pp. 2473–2476, vol. 2474 ). doi:10.1109/icassp.1998.681652

  14. Jian, L., & Renbiao, W. (1998). An efficient algorithm for time delay estimation. IEEE Transactions on Signal Processing, 46(8), 2231–2235. doi:10.1109/78.705444.

    Article  Google Scholar 

  15. Yacoub, M. D. (2010). Nakagami-m phase-envelope joint distribution: A new model. IEEE Transactions on Vehicular Technology, 59(3), 1552–1557. doi:10.1109/TVT.2010.2040641.

    Article  Google Scholar 

  16. Yacoub, M. D. (2009). Nakagami-m phase-envelope joint distribution: An improved model. In Microwave and optoelectronics conference (IMOC), 2009 SBMO/IEEE MTT-S International, 3–6 Nov. 2009 (pp. 335–339). doi:10.1109/IMOC.2009.5427569

  17. Ming, Z. (2011). Frequency correlated MIMO channel modeling and simulation research. Nanjing: Nanjing University of Aeronautics and Astronautics.

    Google Scholar 

  18. Matthaiou, M., & Laurenson, D. I. (2007). Rejection method for generating Nakagami-m independent deviate. Electronics Letters, 43(25), 1474–1475.

    Article  Google Scholar 

  19. Lei, S., Zhen, G., Liu, Y., & Li, X. (2014). A novel simulation method for Nakagami-m fading channel. Paper presented at the 31st general assembly of the International Union of Radio Science, Beijing.

  20. Lei, S., Zhen, G., Yanming, L., Lei, Z., & Xiaoping, L. (2014). A complex Nakagami fading channel modeling method. China: Beijing KEYI Intellectual Property Agency.

  21. Manickam, T. G., Vaccaro, R. J., & Tufts, D. W. (1994). A least-squares algorithm for multipath time-delay estimation. IEEE Transactions on Signal Processing, 42(11), 3229–3233. doi:10.1109/78.330381.

    Article  Google Scholar 

  22. Moghaddam, P. P., Amindavar, H., & Kirlin, R. L. (2003). A new time-delay estimation in multipath. IEEE Transactions on Signal Processing, 51(5), 1129–1142. doi:10.1109/TSP.2003.810290.

    Article  MathSciNet  Google Scholar 

  23. Renbiao, W., & Jian, L. (1998). Time-delay estimation via optimizing highly oscillatory cost functions. IEEE Journal of Oceanic Engineering, 23(3), 235–244. doi:10.1109/48.701196.

    Article  Google Scholar 

  24. Zhou, X., Zhang, H., Hu, X., Hui, J., & Li, T. (2014). Improved results on robust stability for systems with interval time-varying delays and nonlinear perturbations. Mathematical Problems in Engineering, 2014, 7. doi:10.1155/2014/898260.

    MathSciNet  Google Scholar 

  25. Ermolaev, V. T., Mal’tsev, A. A., & Rodyushkin, K. V. (2001). Statistical Characteristics of the AIC and MDL criteria in the problem of estimating the number of sources of multivariate signals in the case of a short sample. Radiophysics and Quantum Electronics, 44(12), 977–983. doi:10.1023/A:1014882129741.

    Article  Google Scholar 

  26. Failli, M. (1989). Digital land mobile radio communications. COST 207: EC.

  27. 3GPP TS 05.05 V8.20.0. (2005–2011). 3rd Generation Partnership Project; technical specification group GSM/EDGE radio access (TM) network; radio transmission and reception (2005). V8.20.0, Valbonne, France.

Download references

Acknowledgments

This work is supported by the National Program on Key Basic Research (Project No. 2014CB340200) and the National Natural Science Foundation of China (No. 61301173). We are grateful to Prof. Li Xiaoping and Prof. Liu Yanming for their assistance in conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Zhao, L., Qiao, Z. et al. A New Statistical WRELAX Algorithm Under Nakagami Multipath Channel Based on Delay Power Spectrum Characteristic. Wireless Pers Commun 82, 1483–1495 (2015). https://doi.org/10.1007/s11277-015-2294-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2294-5

Keywords

Navigation