Skip to main content

Advertisement

Log in

A Novel Multiuser Detector Based on Restricted Search Space and Depth-First Tree Search Method in DS/CDMA Communication Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we consider an improved and efficient algorithm for the multiuser detection (MUD) in direct sequence/code division multiple access (DS/CDMA) communication systems. The optimum detector for MUD is the maximum likelihood (ML) detector, but its complexity is very high and it calls for an optimization problem that involves an exhaustive search. Consequently, there has been considerable interest in suboptimal multiuser detectors with less complexity and reasonable performance. The idea of reducing the complexity by sub-optimum detectors was efficient and applicable but had some defects. The idea proposed in this paper is the restriction of the search space. This idea comprises using a sub-optimum detector such as ordinary genetic algorithm for which the size of the search space is confined to a predetermined region that is smaller than the whole search space. This limited region includes the objective bit sequence. Then by using depth-first tree search algorithm, we could find the optimum bit stream. We compare our algorithm to the ML detector, the genetic algorithm with conventional detector, and the ant colony optimization (ACO) detector which have been used for MUD in DS/CDMA. Simulation results show that the performance of this algorithm is near the optimal detector with very low complexity, and works better in comparison to other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lupas, R., & Verdu, S. (1989). Linear multiuser detectors for synchronous code division multiple-access channels. IEEE Transactions on Information Theory, 35, 123–136.

    Article  MATH  MathSciNet  Google Scholar 

  2. Verdu, S. (1986). Minimum probability of error for asynchronous Gaussian multiple access channels. IEEE Transactions on Information Theory, 32, 85–96.

    Article  MATH  MathSciNet  Google Scholar 

  3. Juntti, M. J., Schlosser, T., & Lilleberg, J. O. (1997). Genetic algorithms for multiuser detection in synchronous CDMA. In Proceedings of IEEE international symposium on information theory. (p. 492).

  4. Ergun, C., & Hacioglu, K. (2000). Multiuser detection using a genetic algorithm in CDMA communications systems. IEEE Transactions on Communications, 48, 522–561.

    Article  Google Scholar 

  5. Yan-Fei, Y., & Yuan-Ping, Zh. (2008). Immune-endocrine genetic algorithm for multi-user detector problem. In International conference on computer science and software engineering (pp. 447–450).

  6. Zahedi, A., Bakhshi, H. R., Jafari, S., Abdolmohammadi, H. R., & Rajati, M. R. (2013). A novel low complexity multiuser detector based on modified genetic algorithm in direct sequence-code division multiple access communication systems. International Journal of Science and Technology (Scientia Iranica), 20(6), 2015–2023.

    Google Scholar 

  7. Tang, P. Y., Li, Z. H., & Huang, S. J. (2004). Multiuser detector based on genetic algorithm and Tabu search. Journal of University of Electronic Science and Technology of China, Chengdu, 5, 499–509.

    MathSciNet  Google Scholar 

  8. Jiang, M., Li, Ch., Yuan, D., & Lagunas, M. A. (2007). Multiuser detection based on wavelet packet modulation and artificial fish swarm algorithm. In IET conference on wireless, mobile and sensor network, (CCWMSN07), China (pp. 117–120).

  9. Lin, L. (2008). A novel genetic multi-user receiver based on wavelet transform and Hamming sphere solution space. In 4th IEEE international conference on circuits and systems for communications, ICCSC 2008 (pp. 260–264).

  10. Zhao, Y., & Zheng, J. (2005). Multiuser detection employing particle swarm optimization in space-time CDMA systems. In Proceedings of ISCIT2005 (pp. 940–942).

  11. El-Mora, H. H., Sheikh, A. U., & Zerguine, A. (2005). Application of particle swarm optimization algorithm to multiuser detection in CDMA. In Proceedings of IEEE 16th PIMRC (vol. 4, pp. 2522–2526).

  12. Hongwu, L. (2009). An ACO based multiuser detection for receive-diversity aided STBC systems. In ISECS international colloquium on computing, communication, control, and management, CCCM 2009 (pp. 250–253).

  13. Chong, X., Maunder, R. G., Yang, L. L., & Hanzo, L. (2009). Near-optimum multiuser detectors using soft-output ant-colony-optimization for the DS-CDMA uplink. IEEE Signal Processing Letters, 16, 137–140.

    Article  Google Scholar 

  14. Chen, S., Samingan, A. K., & Hanzo, L. (2005). Adaptive near minimum error rate training for neural networks with application to multiuser detection in CDMA communication systems. Signal processing, 85(7), 1435–1448.

    Article  MATH  Google Scholar 

  15. Mohammadi, M., Ardebilipour, M., Moussakhani, B., & Mobini, Z. (2008). Performance comparison of RLS and LMS channel estimation techniques with optimum training sequences for MIMO–OFDM Systems. In 5th IEEE International conference on wireless and optical communication networks (WOCN’2008), Surabaya, Indonesia (pp. 1–5).

  16. Coulon, M., & Roviras, D. (2008). Adaptive detection for a differential Chaos-based multiple access system on unknown multipath fading channels. In International conference on acoustics, speech, and signal processing (ICASSP 2008), Las Vegas, Nevada, USA (pp. 3485–3488).

  17. Gajbhiye, M. R. ( 2010). Adaptive MMSE-MRC multiuser detector with mixed phase channel for DS-CDMA system. In IEEE 4th international symposium on advanced network and telecommunication systems (ANTS) (pp. 100–102).

  18. D‘Orazio, L., Sacchi, C., Louveaux, J., & Vandendorpe, L. (2010). Adaptive minimum conditional bit-error-rate linear multiuser detection for STBC-MC-CDMA systems transmitting over mobile radio channels. In Proceedings of 3rd international workshop on multiple access communications (MACOM 2010), Springer (Berlin) (pp. 36–46).

  19. Dietl, G., & Utschick, W. (2007). Complexity reduction of iterative receivers using low-rank equalization. IEEE Transactions on Signal Processing, 55(3), 1035–1046.

    Article  MathSciNet  Google Scholar 

  20. Honig, M. L., Woodward, G. K., & Sun, Y. (2004). Adaptive iterative multi-user decision feedback detection. IEEE Transactions on Wireless Communications, 3(2), 477–485.

    Article  Google Scholar 

  21. Lončar, M., Müller, R. R., Wehinger, J., Mecklenbräuker, C. F., & Abe, T. (2004). Iterative channel estimation and data detection in frequency selective fading MIMO channels. European Transactions on Telecommunications, 15(5), 459–470.

    Article  Google Scholar 

  22. Wehinger, J. (2005). Iterative Multi-User Receivers for CDMA Systems. In PhD thesis, Vienna University of Technology, Vienna, Austria.

  23. Zemen, T., Mecklenbrauker, C. F., Wehinger, J., & Muller, R. R. (2006). Iterative joint time-variant channel estimation and multi-user detection for MC-CDMA. IEEE Transactions on Wireless Communications, 5(6), 1469–1478.

    Article  Google Scholar 

  24. Agrell, E., Eriksson, T., Vardy, A., & Zeger, K. (2002). Closest point search in lattices. IEEE Transactions on Information Theory, 48(8), 2201–2214.

    Article  MATH  MathSciNet  Google Scholar 

  25. Damen, M. O., El Gamal, H., & Caire, G. (2003). On maximum-likelihood detection and the search for the closest lattice point. IEEE Transactions on Information Theory, 49(10), 2389–2402.

    Article  MATH  Google Scholar 

  26. Wong, K. W., Tsiu, C. Y., Cheng, R. S. K., & Mow, W. H. (2002). A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels. In IEEE international symposium on circuits and systems (ISCAS), Scottsdale, AZ, USA.

  27. Murugan, A. D., Gamal, H. E., Damen, M. O., & Caire, G. (2006). A unified framework for tree search decoding: Rediscovering the sequential decoder. IEEE Transactions on Information Theory, 52(3), 933–953.

    Article  MATH  Google Scholar 

  28. Brunel, L., & Boutros, J. J. (2003). Lattice decoding for joint detection in direct-sequence CDMA systems. IEEE Transactions on Information Theory, 49(4), 1030–1037.

    Article  MATH  MathSciNet  Google Scholar 

  29. Proakis, J. G. (1995). Digital Communications (3rd ed.). Singapore: McGraw-Hill.

    Google Scholar 

  30. Verdu, S. (1998). Multiuser detection. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  31. Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms (2nd ed.). London: Wiley.

    MATH  Google Scholar 

  32. Goldberg, D., & Reading, M. (1989). Genetic algorithm in search optimization and machine learning. Boston: Addison-Wesley.

    Google Scholar 

  33. Sivanandam, S. N., & Deepa, S. N. (2008). An Introduction to genetic algorithms. Heidelberg: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulhamid Zahedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahedi, A., Rajamand, S., Jafari, S. et al. A Novel Multiuser Detector Based on Restricted Search Space and Depth-First Tree Search Method in DS/CDMA Communication Systems. Wireless Pers Commun 82, 1531–1545 (2015). https://doi.org/10.1007/s11277-015-2297-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2297-2

Keywords

Navigation