Skip to main content
Log in

Precoder Based Collaborative Blind Multiuser Detection of CDMA Signals

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A new collaborative blind multiuser detection scheme based on precoding and signal subspace estimation is proposed for binary phase-shift keying/direct-sequence code-division multiple-access signals. In this scheme, precoding the phase of the data enables separation and detection of a desired user’s signal from the received signal with the prior knowledge of only the precoding sequence, signature waveform and timing of the user of interest. In this approach, instead of assigning unique precoding sequence to each user, same precoding sequence is assigned to a group of users which enables group precoding and deprecoding operations. The proposed collaborative blind multiuser receiver consists of two stages: group deprecoding stage to minimize multiple-access interference due to multiple groups in the system and blind subspace multiuser detection stage to detect desired user data from the respective group. The simulation results confirm that the performance gain afforded by the proposed scheme can be substantial when compared to the conventional linear subspace blind detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Verdu, S. (1998). Multiuser detection. UK: Cambridge University Press.

    MATH  Google Scholar 

  2. Honig, M., Madhow, U., & Verdu, S. (1995). Blind adaptive multiuser detection. IEEE Transactions on Information Theory, 41(4), 944–960.

    Article  MATH  Google Scholar 

  3. Xiaodong Wang, H., & Poor, Vincent. (1998). Blind multiuser detection: A subspace approach. IEEE Transactions on Information Theory, 44(2), 677–690.

    Article  MATH  Google Scholar 

  4. Xiaodong Wang, H., & Poor, Vincent. (1998). Blind equalization and multiuser detection in dispersive CDMA channels. IEEE Transactions on Communications, 46(1), 91–103.

    Article  Google Scholar 

  5. Al-Bayati, A. K. S., Prakriya, Shankar, & Prasad, Surendra. (2003). Block modulus precoding for blind multiuser detection of DS-CDMA signals. IEEE Transactions on Communications, 51(1), 52–56.

    Article  Google Scholar 

  6. Xavier, J., Barroso, V. A. N., & Moura, J. (2001). Closed-form correlative coding (CFC2) blind identification of MIMO channels: Isometry fitting to second order statistics. IEEE Transactions on Signal Processing, 49(5), 1073–1086.

    Article  MathSciNet  Google Scholar 

  7. Hachem, W., Desbouvries, F., & Loubaton, P. (2000). Blind channel estimation for CDMA systems: An induced cyclostationarity approach. International Conference on Acoustics, Speech and Signal Processing, Istanbul, Turkey, 5, 2477–2480.

    Google Scholar 

  8. Tsatsanis, M. K., & Ciannakis, G. B. (1997). Transmitter induced cyclostationarity for blind channel equalization. IEEE Transactions on Signal Processing, 45(7), 1785–1794.

    Article  MATH  Google Scholar 

  9. van der Veen, A. J., & Paulraj, A. (1996). An analytical constant modulus algorithm. IEEE Transactions on Signal Processing, 44(5), 1136–1155.

    Article  Google Scholar 

  10. Al-Bayati, A. K. S., & Aloquili, O. M. (2009). Constellation-switching precoding for blind detection of co-channel signals: Application to 8-ary signaling. IEEE Transactions on Communications, 57(10), 2891–2894.

    Article  Google Scholar 

  11. Al-Bayati, A. K. S., Prakriya, S., Smadi, M. A., & Prasad, S. (2012). Blind detection of co-channel QPSK signals: A phase precoding-based approach. Journal of Wireless Personal Communications, Springer, 62(1), 79–92.

    Article  Google Scholar 

  12. Al-Bayati, A. K. S., Prakriya, Shankar, & Prasad, Surendra. (2004). Block phase-precoding for blind multiuser detection of BPSK/DS-CDMA signals. IEEE Transactions on Communications, 52(7), 1043–1046.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lenty Stuwart.

Appendix

Appendix

Theorem 1

A linear zero-forcing detector \( \varvec{w}^{(g)} \) for detecting the data bits of user group g is derived such that, in the absence of noise, both the ISI and interference from other groups are completely eliminated at the detector output.

Proof

In the absence of noise, user group \( g \) is assumed to be desired user group. From (14) we get

$$ imag(\varvec{w}^{{(g)^{H} }} \varvec{r}^{{\left( \varvec{g} \right)}} ) = \left[ {\varvec{w}_{re}^{{\left( g \right)^{T} }} \; \varvec{w}_{im}^{{\left( g \right)^{T} }} } \right] \left[ {\varvec{r}_{im}^{{\left( g \right)^{T} }} \; \varvec{r}_{re}^{{\left( g \right)^{T} }} } \right]^{T} = 0 $$
(23)

Subscripts re and im are used to represent real and imaginary parts respectively. Considered that \( \varvec{b}^{(g)} \) and \( \varvec{s}^{(g)} \) are \( L \) users data vectors in the binary constellation and effective signature vectors respectively of user group \( g \), similarly \( \varvec{B}^{(g)} \) and \( \varvec{S}^{(g)} \) are \( (GL - L) \) users data vectors in the quaternary constellation and effective signature vectors respectively. Then without the loss of generality, we can write

$$ \varvec{r}^{{\left( \varvec{g} \right)}} = \varvec{s}^{(g)} \varvec{b}^{(g)} + \varvec{S}^{(g)} \varvec{B}^{(g)} $$
(24)

where \( \varvec{b}^{(g)} = [\varvec{b}_{g1}^{T} \varvec{b}_{g2}^{T} \ldots \varvec{b}_{gL}^{T} ]^{T} \), \( \varvec{S}^{(g)} = [\varvec{s}^{(1)} \varvec{ s}^{(2)} \ldots \varvec{s}^{(g - 1)} \varvec{ s}^{(g + 1)} \ldots \varvec{s}^{(G)} ] \), \( \varvec{B}^{\left( g \right)} = \left[ {\varvec{b}_{p1}^{H} \varvec{ b}_{p2}^{H} \ldots \varvec{b}_{p(g - 1)}^{H} \varvec{b}_{p(g + 1)}^{H} \ldots \varvec{b}_{pG}^{H} } \right]^{H} \), and \( \varvec{s}^{(g)} = \left[ {\varvec{s}_{1q} \;\varvec{s}_{2q} \ldots \varvec{s}_{Lq} } \right], \)where \( \varvec{b}_{gl } \) and \( \varvec{s}_{lq} \) are the \( l \)th user’s row data vector and effective signature column vector respectively of user group \( g \). Also, \( \varvec{b}_{pu } \) are data vectors of user group \( u \) in the quarternary constellation. Thus the real and imaginary parts of \( \varvec{r}^{{\left( \varvec{g} \right)}} \) can be written as

$$ \begin{aligned} \varvec{r}_{re}^{(g)} & = \varvec{s}_{re}^{(g)} \varvec{b}^{(g)} + \varvec{S}_{re}^{(g)} \varvec{B}_{re}^{(g)} - \varvec{S}_{im}^{(g)} \varvec{B}_{im}^{(g)} \\ \varvec{r}_{im}^{(g)} & = \varvec{s}_{im}^{(g)} \varvec{b}^{(g)} + \varvec{S}_{re}^{(g)} \varvec{B}_{im}^{(g)} + \varvec{S}_{im}^{(g)} \varvec{B}_{re}^{(g)} \\ \end{aligned} $$
(25)

substituting (25) in (23) we get,

$$ \begin{gathered} \left[ {\varvec{w}_{re}^{{\left( g \right)^{T} }} \; \varvec{w}_{im}^{{\left( g \right)^{T} }} } \right]\left[ {\left( {\varvec{s}_{im}^{(g)} \varvec{b}^{(g)} + \varvec{S}_{re}^{(g)} \varvec{B}_{im}^{(g)} + \varvec{S}_{im}^{(g)} \varvec{B}_{re}^{(g)} } \right)^{T} \left( {\varvec{s}_{re}^{(g)} \varvec{b}^{(g)} + \varvec{S}_{re}^{(g)} \varvec{B}_{re}^{(g)} - \varvec{S}_{im}^{(g)} \varvec{B}_{im}^{(g)} } \right)^{T} } \right]^{T} = 0 \hfill \\ \left( \begin{aligned} \varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{s}_{im}^{\left( g \right)} \varvec{b}^{\left( g \right)} + \varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{S}_{re}^{\left( g \right)} \varvec{B}_{im}^{\left( g \right)} & + \varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{S}_{im}^{\left( g \right)} \varvec{B}_{re}^{\left( g \right)} + \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{s}_{re}^{\left( g \right)} \varvec{b}^{\left( g \right)} \\ & + \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{S}_{re}^{\left( g \right)} \varvec{B}_{re}^{\left( g \right)} - \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{S}_{im}^{(g)} \varvec{B}_{im}^{(g)} \\ \end{aligned} \right) = 0 \hfill \\ \end{gathered} $$
(26)

rearranging the terms, we get

$$ \begin{gathered} \left( {\varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{s}_{im}^{\left( g \right)} + \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{s}_{re}^{\left( g \right)} } \right) \varvec{b}^{\left( g \right)} + \left( {\varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{S}_{im}^{\left( g \right)} + \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{S}_{re}^{\left( g \right)} } \right)\varvec{B}_{re}^{\left( g \right)} \hfill \\ + \left( {\varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{S}_{re}^{\left( g \right)} - \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{S}_{im}^{(g)} } \right)\varvec{B}_{im}^{(g)} = 0 \hfill \\ \end{gathered} $$
$$ \begin{gathered} \left[ {\varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{s}_{im}^{\left( g \right)} + \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{s}_{re}^{\left( g \right)} \quad \varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{S}_{im}^{\left( g \right)} + \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{S}_{re}^{\left( g \right)} \quad \varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{S}_{re}^{\left( g \right)} - \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{S}_{im}^{(g)} } \right] \hfill \\ \left[ {\varvec{b}^{{\left( g \right)^{T} }} \;\varvec{B}_{re}^{{\left( g \right)^{T} }} \;\varvec{B}_{im}^{{\left( g \right)^{T} }} } \right]^{T} = 0 \hfill \\ \end{gathered} $$
(27)

(27) is rewritten as

$$ \left[ {f_{1} \; f_{2} \; f_{3} } \right]\left[ {\varvec{b}^{{\left( g \right)^{T} }} \; \varvec{B}_{re}^{{\left( g \right)^{T} }} \; \varvec{B}_{im}^{{\left( g \right)^{T} }} } \right]^{T} = 0 $$
(28)

Suppose that a block of \( 2M + 1 \) received data samples are processed together. Then defined matrix \( \left[ {\varvec{b}^{\left( g \right)} \; \varvec{B}_{re}^{\left( g \right)} \; \varvec{B}_{im}^{(g)} } \right]^{T} \) is tall of size \( \left( {L + 2\left( {GL - L} \right)} \right) \times (2M + 1) \), which necessitates that \( \left( {2M + 1} \right) > (2GL - 1) \). The number of samples \( \left( {2M + 1} \right) \) should be chosen such that the above said matrix has full rank for linearly independent data vectors and precoding sequences. Thus, from (28) we can write

$$ \begin{aligned} f_{1} & = [\varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{s}_{im}^{\left( g \right)} + \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{s}_{re}^{\left( g \right)} ] = 0 \\ f_{2} & = \left[ {\varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{S}_{im}^{\left( g \right)} + \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{S}_{re}^{\left( g \right)} } \right] = 0 \\ f_{3} & = \left[ {\varvec{ w}_{re}^{{\left( g \right)^{T} }} \varvec{S}_{re}^{\left( g \right)} - \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{S}_{im}^{(g)} } \right] = 0 \\ \end{aligned} $$
(29)

From (29) it is easy to see that \( imag\left( {\varvec{w}^{{\left( g \right)^{H} }} \;\varvec{s}^{\left( g \right)} } \right) = 0 \), \( imag\left( {\varvec{w}^{{\left( g \right)^{H} }} \;\varvec{S}^{\left( g \right)} } \right) = 0 \) and \( real(\varvec{w}^{{\left( g \right)^{H} }} \;\varvec{S}^{\left( g \right)} ) = 0 \), hence we can write

$$ \varvec{w}^{{\left( g \right)^{H} }} \;\varvec{S}^{\left( g \right)} = 0 $$
(30)

For the desired user group g, from (14), we can also write

$$ \left\| {real\left( {\varvec{w}^{{\left( g \right)^{H} }} \varvec{r}^{{\left( \varvec{g} \right)}} } \right)} \right\| = \left\| {\left[ {\varvec{w}_{re}^{{\left( g \right)^{T} }} \quad \varvec{w}_{im}^{{\left( g \right)^{T} }} } \right]} \quad {\left[ {\varvec{r}_{re}^{{\left( g \right)^{T} }} \quad - \varvec{r}_{im}^{{\left( g \right)^{T} }} } \right]^{T} } \right\| = \left\| {\varvec{b}^{(g)} } \right\| $$
(31)

substituting (25) in (31) we get,

$$ \begin{aligned} real\left( {\varvec{w}^{{\left( g \right)^{H} }} \varvec{r}^{{\left( \varvec{g} \right)}} } \right) &= \left[ {\varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{w}_{im}^{{\left( g \right)^{T} }} } \right] \\ &\quad\times\left[ {\left( {\varvec{s}_{re}^{(g)} \varvec{b}^{(g)} + \varvec{S}_{re}^{(g)} \varvec{B}_{re}^{(g)} - \varvec{S}_{im}^{(g)} \varvec{B}_{im}^{(g)} } \right)^{T} \quad \left( { - \varvec{s}_{im}^{(g)} \varvec{b}^{(g)} - \varvec{S}_{re}^{(g)} \varvec{B}_{im}^{(g)} - \varvec{S}_{im}^{(g)} \varvec{B}_{re}^{(g)} } \right)^{T} } \right]^{T} \\ &= \left( \begin{array}{ll} &\varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{s}_{re}^{(g)} \varvec{b}^{(g)} + \varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{S}_{re}^{(g)} \varvec{B}_{re}^{(g)} - \varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{S}_{im}^{(g)} \varvec{B}_{im}^{(g)} - \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{s}_{im}^{(g)} \varvec{b}^{(g)} \hfill \\ &- \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{S}_{re}^{(g)} \varvec{B}_{im}^{(g)} - \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{S}_{im}^{(g)} \varvec{B}_{re}^{(g)} \hfill \\ \end{array} \right) \\ &= \left[ {\varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{s}_{re}^{\left( g \right)} - \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{s}_{im}^{\left( g \right)} \quad \varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{S}_{re}^{\left( g \right)} - \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{S}_{im}^{\left( g \right)}\quad - \varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{S}_{im}^{\left( g \right)} - \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{S}_{re}^{\left( g \right)} } \right] \\ &\quad\times \left[ {\varvec{b}^{{\left( g \right)^{T} }} \;\varvec{B}_{re}^{{\left( g \right)^{T} }} \;\varvec{B}_{im}^{{\left( g \right)^{T} }} } \right]^{T}\end{aligned} $$
(32)

Using (29) we can write (32) as

$$ real(\varvec{w}^{{(g)^{H} }} \varvec{r}^{{\left( \varvec{g} \right)}} ) = \left[ {\varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{s}_{re}^{(g)} - \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{s}_{im}^{(g)} \; 0\; 0} \right]\left[ {\varvec{b}^{{\left( g \right)^{T} }} \; \varvec{B}_{re}^{{\left( g \right)^{T} }} \; \varvec{B}_{im}^{{\left( g \right)^{T} }} } \right]^{T} $$
(33)

Taking norm on both sides after simplification, (33) implies

$$ \left\| {real(\varvec{w}^{{(g)^{H} }} \varvec{r}^{{\left( \varvec{g} \right)}} )} \right\| = \left\| {\left( {\varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{s}_{re}^{(g)} - \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{s}_{im}^{(g)} } \right)\varvec{b}^{(g)}} \right\| $$
(34)

Using (31) we can write (34) as

$$ \left\| {\varvec{b}^{(g)}} \right\| = \left\| {\left( {\varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{s}_{re}^{(g)} - \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{s}_{im}^{(g)} } \right)\varvec{b}^{(g)}} \right\| $$
(35)

It is easy to see from (35) that \( \varvec{w}_{re}^{{\left( g \right)^{T} }} \varvec{s}_{re}^{(g)} - \varvec{w}_{im}^{{\left( g \right)^{T} }} \varvec{s}_{im}^{(g)} \) is the matrix of size \( L \times L \). Thus (35) implies that \( \left\| {real\left( {\varvec{w}^{{\left( g \right)^{H} }} \varvec{s}^{(g)} } \right)} \right\| = 1 \)

Note: \( \left\|real\left( {\varvec{w}^{{\left( g \right)^{H} }} \varvec{s}^{(g)} } \right)\right\| \,= 1 \) and \( imag\left( {\varvec{w}^{{\left( g \right)^{H} }} \varvec{s}^{(g)} } \right) = 0 \), \( imag(\varvec{w}^{{\left( g \right)^{H} }} \;\varvec{S}^{\left( g \right)} ) = 0 \) and \( real(\varvec{w}^{{\left( g \right)^{H} }} \;\varvec{S}^{\left( g \right)} ) = 0 \) that implies \( \varvec{w}^{{\left( g \right)^{H} }} \;\varvec{S}^{\left( g \right)} = 0 \)

Thus, proof is complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenty Stuwart, S., Tamil Selvi, S. Precoder Based Collaborative Blind Multiuser Detection of CDMA Signals. Wireless Pers Commun 83, 135–148 (2015). https://doi.org/10.1007/s11277-015-2384-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2384-4

Keywords

Navigation