Skip to main content
Log in

GCW: A Game Theoretic Contention Window Adjustment Approach for IEEE 802.11 WLANs

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In unsupervised contention-based networks such as DCF mode of IEEE 802.11, wireless nodes compete to access the shared medium which is called random access or multiple access channel. The most important problem in such networks is the manner in which a node is selected to access the channel. In such networks, each node adjusts its channel access probability by tuning its contention window (CW) size. In case of excessive number of nodes, adjusting CW size irrespective of the number of competing nodes causes the network performance to reduce due to severe collisions. Game theory is a powerful tool for modeling, analysis and optimization of shared resources in competitive environments. In this study, the problem of channel access control is investigated in game theory framework. Specifically, based on the analytical models of DCF, a game theoretic approach, called GCW (game theoretic CW), is proposed to tune CW dynamically. Using GCW, each node can choose its CW autonomously, such that the overall network performance is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. W. Group. (2007). IEEE 802.11, IEEE Standard for Information Technology Telecommunications and information exchange between systems local and metropolitan AREA networks specific requirements. Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. ed: IEEE.

  2. Li, Y., Wang, C., Long, K., & Zhao, W. (2008). Modeling channel access delay and jitter of IEEE 802.11 DCF. Wireless Personal Communications, 47, 417–440.

    Article  Google Scholar 

  3. Pal, A. (2013). Data communication and computer networks. PHI Learning Pvt. Ltd.

  4. Dargie, W., & Poellabauer, C. (2010). Fundamentals of wireless sensor networks: Theory and practice. London: Wiley.

    Book  Google Scholar 

  5. Campista, M. E. M. (2014). Advanced routing protocols for wireless networks. London: Wiley.

    Book  Google Scholar 

  6. Karl, H., & Willig, A. (2007). Protocols and architectures for wireless sensor networks. London: Wiley.

    Google Scholar 

  7. Lee B. G., & Choi S. (2008). Broadband wireless access and local networks: Mobile WiMAX and WiFi. Artech House Publishers.

  8. Huang, F., & Yang, Y. (2009). Medium access control in wireless mesh networks. In S. Misra, S. Misra, & I. Woungang (Eds.), Guide to wireless mesh networks (pp. 31–48). London: Springer.

    Chapter  Google Scholar 

  9. Ghazvini, M., Movahedinia, N., Jamshidi, K., & Moghim, N. (2013). Game theory applications in CSMA methods. Communications Surveys and Tutorials, IEEE, 15, 1062–1087.

    Article  Google Scholar 

  10. Sarkar, N. (2014). Improving the performance of wireless LANs: A practical guide. Boca Raton: CRC Press.

    Google Scholar 

  11. Bithas, P. S., Lioumpas, A. S. & Alexiou, A. (2012) A hybrid contention/reservation medium access protocol for wireless sensor networks. In Globecom Workshops (GC Wkshps) (pp. 1669–1674). 2012 IEEE.

  12. Shrestha, B., Hossain, E., & Choi, K. W. (2014). Distributed and centralized hybrid CSMA/CA-TDMA schemes for single-hop wireless networks. arXiv preprint arXiv:1401.5528.

  13. Lee, K.-S., & Kim, C. (2013). Distributed sequential access MAC protocol for single-hop wireless networks. Wireless Personal Communications, 72, 2177–2184.

    Article  Google Scholar 

  14. Tuysuz, M., & Mantar, H. A. (2014). A Beacon-based collision-free channel access scheme for IEEE 802.11 WLANs. Wireless Personal Communications, 75, 155–177.

    Article  Google Scholar 

  15. Zhang, R., Ruby, R., Pan, J., Cai, L., & Shen, X. (2010). A hybrid reservation/contention-based MAC for video streaming over wireless networks. IEEE Journal on Selected Areas in Communications, 28, 389–398.

    Article  Google Scholar 

  16. Lei, X., & Rhee, S. H. (2014). Enhancing IEEE 802.11 MAC via a sender-initiated reservation. Wireless Personal Communications, 75, 2399–2409.

    Article  Google Scholar 

  17. Shrestha, B., Hossain, E., & Choi, K. W. (2014). Distributed and centralized hybrid CSMA/CA-TDMA schemes for single-hop wireless networks. IEEE Transactions on Wireless Communications, 13, 4050–4065.

    Article  Google Scholar 

  18. Muqattash, A., & Krunz, M. (2003). CDMA-based MAC protocol for wireless ad hoc networks. In Proceedings of the 4th ACM international symposium on Mobile ad hoc networking and computing (pp. 153–164).

  19. Sobral, M. M., & Becker, L. B. (2008). A wireless hybrid contention/TDMA-based MAC for real-time mobile application. In Proceedings of the 2008 ACM symposium on Applied computing (pp. 284–288).

  20. Dang, D. N. M., Dang, H. N., Nguyen, V., Htike, Z., & Hong, C. S. (2014). HER-MAC: A hybrid efficient and reliable MAC for vehicular Ad Hoc networks. In 2014 IEEE 28th International Conference on Advanced Information Networking and Applications (AINA), (pp. 186–193).

  21. Yao, X.-W., Wang, W.-L., Wu, T.-C., Yao, X.-M., & Yang, S.-H. (2014). A novel hybrid slot allocation mechanism for 802.11 e EDCA protocol. Information Processing Letters, 114, 25–30.

    Article  MathSciNet  Google Scholar 

  22. Walke, B. H., Mangold, S., & Berlemann, L. (2006). IEEE 802 wireless systems: Protocols, multi-hop mesh/relaying, performance and spectrum coexistence. London: Wiley.

    Book  Google Scholar 

  23. Ghazvini, M., Movahedinia, N., & Jamshidi, K. (2012). Carrier sense multiple access tuning parameters using game theory. International Journal of Wireless and Mobile Networks (IJWMN), 4, 259–268.

    Article  Google Scholar 

  24. Forouzan, A. B. (2006). Data communications and networking (sie). New York: Tata McGraw-Hill Education.

    Google Scholar 

  25. Jurdak, R., Lopes, C. V., & Baldi, P. (2004). A survey, classification and comparative analysis of medium access control protocols for ad hoc networks. IEEE Communications Surveys and Tutorials, 6, 2–16.

    Article  Google Scholar 

  26. Kumar, S., Raghavan, V. S., & Deng, J. (2006). Medium access control protocols for ad hoc wireless networks: A survey. Ad Hoc Networks, 4, 326–358.

    Article  Google Scholar 

  27. Van den Heuvel-Romaszko, S., & Blondia, C. (2004). A survey of MAC protocols for Ad Hoc networks and IEEE 802.11 (pp. 1–5).

  28. Cagalj, M., Ganeriwal, S., Aad, I., & Hubaux, J. P. (2005). On selfish behavior in CSMA/CA networks. In 24th Annual Joint Conference of the IEEE Computer and Communications Societies (pp. 2513–2524).

  29. Ayienga, E., Opiyo, E., Manderick, B., & Odongo, O. (2013). Game theory and learning at the medium access control layer for distributed radio resource sharing in random access wireless networks.

  30. Nisan, N. (2007). Algorithmic game theory. Cambridge: Cambridge Univ Press.

    Book  Google Scholar 

  31. Roughgarden, T. (2010). Algorithmic game theory. Communications of the ACM, 53, 78–86.

    Article  Google Scholar 

  32. Zhu Han, D. N., Saad, W., Başar, T., & Hjørungnes, A. (2011). Game theory in wireless and communication networks: Theory, models, and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  33. Zhang, Y., & Guizani, M. (2011). Game theory for wireless communications and networking. Boca Raton: CRC Press.

    Google Scholar 

  34. Apt, K. R., & Grädel, E. (2011). Lectures in game theory for computer scientists. Cambridge: Cambridge Univ Press.

    Book  Google Scholar 

  35. Charilas, D. E., & Panagopoulos, A. D. (2010). A survey on game theory applications in wireless networks. Computer Networks, 54, 3421–3430.

  36. Felegyhazi, M., & Hubaux, J. P. (2006). Game theory in wireless networks: A tutorial,” Technical Report: LCA-REPORT-2006-002, EPFL2006.

  37. Osborne, M. J., & Rubinstein, A. (1994). A course in game theory. Cambridge: MIT press.

    Google Scholar 

  38. Altman, E., Azouzi, R. E., & Jiménez, T. (2004). Slotted ALOHA as a game with partial information. Computer Networks, 45, 701–713.

    Article  Google Scholar 

  39. MacKenzie, A. B., & DaSilva, L. A. (20060). game theory for wireless engineers. Morgan & Claypool.

  40. MacKenzie, A. B., & Wicker, S. B. (2001). Game theory and the design of self-configuring, adaptive wireless networks. IEEE Communications Magazine, 39, 126–131.

    Article  Google Scholar 

  41. Dixit, A. K., & Nalebuff, Ð. (1991). Thinking strategically. New York: WW Norton & Company.

    Google Scholar 

  42. Georgiev, V. (2008). Using game theory to analyze wireless ad hoc networks. RWTH Aachen, Department of Computer Science.

  43. Mehta, S., & Kwak, K. S. (2010). Application of game theory to wireless networks. In Crisan, M. (Ed.), Convergence and Hybrid Information Technologies, InTech.

  44. Srivastava, V., Neel, J., MacKenzie, A. B., Menon, R., DaSilva, L. A., Hicks, J. E., et al. (2005). Using game theory to analyze wireless ad hoc networks. IEEE Commun. Surv. Tutorials, 7, 46–56.

    Article  Google Scholar 

  45. Srivastava, V., Neel, J., MacKenzie, A. B., Menon, R., DaSilva, L. A., Hicks, J. E., et al. (2005). Using game theory to analyze wireless ad hoc networks. Communications Surveys & Tutorials, IEEE, 7, 46–56.

    Article  Google Scholar 

  46. Akkarajitsakul, K., Hossain, E., Niyato, D., & Kim, D. (2011). Game theoretic approaches for multiple access in wireless networks: A survey. IEEE Communication Surveys Tutorials, 13, 372–395.

    Article  Google Scholar 

  47. Chen, L., Cui, T., Low, S. H., & Doyle, J. C. (2007). A game-theoretic model for medium access control, in WICON’07, Austin, Texas.

  48. Chen, L., & Leneutre, J. (2008). A game theoretic framework of distributed power and rate control in IEEE 802.11 WLANs. IEEE Journal on Selected Areas in Communications, 26, 1128–1137.

    Article  Google Scholar 

  49. Huang, W. (2012). Application of game theory in wireless communication networks. Ph.D. Dissertation, Dept. Elec. and Comp. Eng. University of British Columbia.

  50. Liao, X., Hao, D., & Sakurai, K. (2011). A taxonomy of game theoretic approaches against attacks in wireless ad hoc networks. Presented at the Symposium on Cryptography and Information Security. Kokura, Japan.

  51. Leino, J. (2003). Applications of game theory in ad hoc networks. M.Sc. Thesis, Dept. Eng. PHYS and MTH, Helsinki UNIV. of Tech.

  52. Akkarajitsakul, K., Hossain, E., & Niyato, D. (2011). Distributed resource allocation in wireless networks under uncertainty and application of Bayesian game. IEEE Communications Magazine, 49, 120–127.

    Article  Google Scholar 

  53. Menache, I., & Ozdaglar, A. (2011). Network games: Theory, models, and dynamics. Morgan & Claypool.

  54. Lasaulce, S., & Tembine, H. (2011). Game theory and learning for wireless networks: Fundamentals and applications. Academic Press.

  55. Van Phan, C. (2014). A game-theoretic framework for opportunistic transmission in wireless networks. In 2014 IEEE Fifth International Conference on Communications and Electronics (ICCE) (pp. 150–154).

  56. BenAmmar, N., & Baras, J. S. (2006). Incentive compatible medium access control in wireless networks. In Workshop on Game theory for communications and networks (p. 5).

  57. Hatami, N. (2008). Studying misbehavior in csma/ca wireless lans. In 3nd ACM workshop on Performance monitoring and measurement of heterogeneous wireless and wired networks,PM2HW2 N ‘08, 2008 (pp. 145–150).

  58. Cagalj, M., Ganeriwal, S. Aad, I., & Hubaux, J. P. (2004). On cheating in CSMA/CA ad hoc networks. In IEEE INFOCOM 2005.

  59. Zhang, G., & Zhang, H. (2008). Modelling IEEE 802.11 DCF in wireless LANs as a dynamic game with incompletely information. In IET International Conference on Wireless, Mobile and Multimedia Networks, Mumbai, India (pp. 215–218).

  60. Zhang, G., Zhang, H., & Zhao, L. (2007). A novel MAC scheme for wireless LANs from the perspective of game theory. In IET Conference on Wireless, Mobile and Sensor Networks, (CCWMSN07)., Shanghai, China (pp. 112–116).

  61. Xiao, Y., Shan, X., & Ren, Y. (2005). Game theory models for IEEE 802.11 DCF in wireless ad hoc networks. IEEE Communications Magazine, 43, S22–S26.

    Article  Google Scholar 

  62. Chen, L., Low, S. H., & Doyle, J. C. (2007). Contention control: A game-theoretic approach. In 46th IEEE Conference on Decision and Control, New Orleans, LA, (pp. 3428–3434).

  63. Cui, T., Chen, L., & Low, S. (2008). A game-theoretic framework for medium access control. IEEE Journal on Selected Areas in Communications, 26, 1116–1127.

    Article  Google Scholar 

  64. Yang, B., Feng, G., & Guan, X. (2006). Random access in wireless ad hoc networks for throughput maximization. In 9th International Conference on Control, Automation, Robotics and Vision, ICARCV ‘06., (pp. 1–6).

  65. Guan, X., Yang, B., Feng, G., & Long, C. (2008). Random access game in ad hoc networks with cooperative and noncooperative users. International Journal Systems, Control Communications, 1, 13–30.

    Article  Google Scholar 

  66. Yang, B. (2009) Competition, cooperation and cognition in wireless resource allocation. PhD Dissertation, City Univ.of Hong Kong.

  67. Fang, Z., & Bensaou, B.(2004). Design and implementation of a MAC scheme for wireless ad-hoc networks based on a cooperative game framework. In IEEE International Conference on Communications (pp. 4034–4038).

  68. Mehta, S., & Kwak, K. S. (2010). An energy-efficient MAC protocol in wireless sensor networks: A game theoretic approach. EURASIP Journal on Wireless Communications and Networking, 2010, 17.

    Google Scholar 

  69. Zhao, L., Zhang, H., & Zhang, J. (2008). Using incompletely cooperative game theory in wireless sensor networks. Wireless Communications and Networking Conference, WCNC, 2008, 1483–1488.

    Google Scholar 

  70. Zhao, L., Zhang, H., & Zhang, J. (2008). Selfish traffic with rational nodes in WLANs. IEEE Communications Letters, 12, 645–647.

    Article  Google Scholar 

  71. Zhao, L., Zhang, J., Yang, K., & Zhang, H. (2007). Using incompletely cooperative game theory in mobile ad hoc networks. In IEEE International Conference on Communications,ICC ‘07 (pp. 3401–3406).

  72. Zhao, L., Zhang, J., & Zhang, H. (2008). Using incompletely cooperative game theory in wireless mesh networks. IEEE Network, 22, 39–44.

    Article  Google Scholar 

  73. Zhao, L., Zou, X., Zhang, H., Ding, W., & Zhang, J. (2008). Game-theoretic cross-layer design in WLANs. In International Wireless Communications and Mobile Computing Conference, IWCMC ‘08 (pp. 570–575).

  74. Zhao, L., Guo, L., Zhang, J., & Zhang, H. (2009). Game-theoretic medium access control protocol for wireless sensor networks. IET Communications, 3, 1274–1283.

    Article  Google Scholar 

  75. Zhao, L., Guo, L., Zhang G., Zhang, H., & Yang, K. (2008). An energy-efficient MAC protocol for WSNs: Game-theoretic constraint optimization. In 11th International Conference on Communication Systems, ICCS. (pp. 114–118).

  76. Zhao, L., Guo, L., Cong, L., & Zhang, H. (2009). An energy-efficient MAC protocol for WSNs: Game-theoretic constraint optimization with multiple objectives. Wireless Sensor Networks, 1, 358–364.

    Article  Google Scholar 

  77. Zhao, L., Cong, L., Zhang, H., Ding, W., & Zhang, J. (2008). Game-theoretic EDCA in IEEE 802.11e WLANs. In IEEE 68th Vehicular Technology Conference,VTC Calgary, BC (pp. 1–5).

  78. Jin, Y., Miao, H., Liu, H., & Xiong, Y. (2009). An improved backoff algorithm for wireless sensor network based on game theory. In IET International Communication Conference on Wireless Mobile and Computing (CCWMC 2009), Shanghai, China (pp. 197–200).

  79. Ghazvini, M., Movahedinia, N., & Jamshidi, K. (2013). A game theory based contention window adjustment for IEEE 802.11 under heavy load. International Journal of Communication Networks and Information Security (IJCNIS), 5, 93–103.

  80. Heusse, M., Rousseau, F., Guillier, R., & Duda, A. (2005). Idle sense: An optimal access method for high throughput and fairness in rate diverse wireless LANs. ACM SIGCOMM Computer Communication Review, 35, 121–132.

    Article  Google Scholar 

  81. Chen, L. (2008). On selfish and malicious behaviors in wireless networks—A non-cooperative game theoretic approach. Ph.D. dissertation, Ecole Nationale Superieure des Telecommunications, Paris.

  82. Tinnirello, I., Giarre, L., & Neglia, G. (2009). Medium access in WiFi networks: Strategies of selfish nodes. IEEE Signal Processing Magazine, 26, 124–128.

    Google Scholar 

  83. Chen, L., Low, S. H., & Doyle, J. C. (2010). Random access game and medium access control design. IEEE/ACM Transactions on Networking, 18, 1303–1316.

    Article  Google Scholar 

  84. Chen, L., & Leneutre, J. (2009). Efficient medium access control design for autonomous wireless networks—A game theoretic approach. In 34th Conference on Local Computer Networks, LCN 2009., Zurich (pp. 376–383).

  85. Wang, F., Younis, O. & Krunz, M. (2006). GMAC: A game-theoretic MAC protocol for mobile ad hoc networks. In 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (pp. 1–9).

  86. Sanyal, D. K., Chattopadhyay, M., & Chattopadhyay, S. (2008). Improved performance with novel utility functions in a game-theoretic model of medium access control in wireless networks. In IEEE Region 10 Conference,TENCON Hyderabad (pp. 1–6).

  87. Sanyal, D. K., Chattopadhyay, M., & Chattopadhyay, S. (2009). Performance improvement of wireless MAC using non-cooperative games. Adv. Ele. Eng. Comput. Sci., 39, 207–218.

    Article  Google Scholar 

  88. He, X., & Tan, L. (2008). Contention access game method in wireless ad-hoc networks. In 4th International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM ‘08 (pp. 1–4).

  89. Jin, Y., & Kesidis, G. (2007). Distributed contention window control for selfish users in IEEE 802.11 wireless LANs. IEEE Journal on Selected Areas in Communications, 25, 1113–1123.

    Article  Google Scholar 

  90. Chen, L., & Leneutre, J. (2007). Selfishness, not always a nightmare: Modeling selfish mac behaviors in wireless mobile ad hoc networks. In 27th International Conference on Distributed Computing Systems (ICDCS’07) (p. 16).

  91. Yang, J., & Shi, H. (2010). Two rounds game CSMA algorithm of WSNs. In 2nd International Conference on Networking and Digital Society (ICNDS), Wenzhou (pp. 270–273).

  92. Tian, J. (2014). Game-theory model based on carrier sense multiple access protocol in wireless network. Journal of Networks, 9, 1603–1609.

    Google Scholar 

  93. Rakshit, S., & Guha, R. K. (2005). Fair bandwidth sharing in distributed systems: A game-theoretic approach. IEEE Transactions on Computers, 54, 1384–1393.

    Article  Google Scholar 

  94. Yan, M., Xiao, L., Du, L., & Huang, L. (2011). On selfish behavior in wireless sensor networks: A game theoretic case study. In Third International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Shangshai (pp. 752–756).

  95. Yang, B., Feng, G., & Guan, X. (2007). Noncooperative random access game via pricing in ad hoc networks. In 46th IEEE Conference on Decision and Control, New Orleans, (pp. 5704–5709).

  96. Park, K. J., Hou, J., Basar, T., & Kim, H. (2009). Noncooperative carrier sense game in wireless networks. IEEE Transactions on Wireless Communications, 8, 5280–5289.

    Article  Google Scholar 

  97. Park, K. J., Choi, J., Hou, J. C., Hu, Y. C., & Lim, H. (2011). Optimal physical carrier sense in wireless networks. Ad Hoc Networks, 9, 16–27.

    Article  Google Scholar 

  98. Lee, H. J., Kwon, H., Motskin, A., & Guibas, L. (2009). Interference-aware MAC protocol for wireless networks by a game-theoretic approach. In INFOCOM ‘09, Rio de Janeiro (pp. 1854–1862).

  99. Tinnirello, I., Giarre, L., & Neglia, G. (2010). A game theoretic approach to MAC design for infrastructure networks. Presented at the 49th IEEE Conference on Decision and Control (CDC), USA.

  100. Tinnirello, I., Giarre, L., & Neglia, G. (2011). Achieving fair bandwidth distribution in WiFi networks: A game theoretical approach. Presented at the 18th IFAC World Congress, Milan, Italy.

  101. Tinnirello, I., Giarre, L. & Neglia, G. (2011). MAC design for WiFi infrastructure networks: A game-theoretic approach. IEEE Transactions on Wireless Communications (pp. 2510–2522).

  102. Konorski, J. (2006). A game-theoretic study of CSMA/CA under a backoff attack. IEEE/ACM Transactions on Networking, 14, 1167–1178.

    Article  Google Scholar 

  103. Ghazvini, M., Movahedinia, N., & Jamshidi, K. (2013). GTXOP: A game theoretic approach for QoS provisioning using transmission opportunity tuning. PLoS ONE, 8, e62925.

    Article  Google Scholar 

  104. Wang,F., Younis, O., & Kiunz, M. (2007). Throughput-oriented MAC for mobile networks with variable packet sizes. In 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, 2006. SECON ‘06, Reston, VA (pp. 421–430).

  105. Wang, F., Younis, O., & Krunz, M. (2009). Throughput-oriented MAC for mobile ad hoc networks: A game-theoretic approach. Ad Hoc Networks, 7, 98–117.

    Article  Google Scholar 

  106. Ghasemi, A., & Faez, K. (2008). A nash power-aware MAC game for ad hoc wireless networks. In IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (pp. 1–5).

  107. Ghasemi, A., & Faez, K. (2010). A non-cooperative game approach for power-aware MAC in ad hoc wireless networks. Computer Communications, 33, 1440–1451.

    Article  Google Scholar 

  108. Long, C., Chi, Q., Guan, X., & Chen, T. (2011). Joint random access and power control game in ad hoc networks with noncooperative users. Ad Hoc Networks, 9, 142–151.

    Article  Google Scholar 

  109. Kim, H., Lee, H. & Lee, S. (2011). A cross-layer optimization for energy-efficient MAC protocol with delay and rate constraints. In International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague (pp. 2336–2339).

  110. Lim, A. O. & Kado, Y. (2007). Using game theory for power and rate control in wireless ad hoc networks. In SICE Annual Conference Takamatsu (pp. 1166–1170).

  111. Shin, H.-J., Shin, D.-R., & Youn, H.-Y. (2004). An efficient backoff scheme for IEEE 802.11 DCF. In Personal Wireless Communications (pp. 180–193).

  112. Yao, Y.-C., Wen, J.-H., & Weng, C.-E. (2013). The performance evaluation of IEEE 802.11 e for QoS support in wireless LANs. Wireless Personal Communications, 69, 413–425.

    Article  Google Scholar 

  113. Alabady, S. A., Salleh, M., & Hasib, A. (2014). Throughput and delay analysis of IEEE 802.11 DCF in the presence of hidden nodes for multi-hop wireless networks. Wireless Personal Communications, 1–21.

  114. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18, 535–547.

    Article  Google Scholar 

  115. Ziouva, E., & Antonakopoulos, T. (2002). CSMA/CA performance under high traffic conditions: Throughput and delay analysis. Computer Communications, 25, 313–321.

    Article  Google Scholar 

  116. Ergen, M., & Varaiya, P. (2005). Throughput analysis and admission control for IEEE 802.11 a. Mobile networks and Applications, 10, 705–716.

    Article  Google Scholar 

  117. Debnath, T. (2012). A Novel QoS-aware MPEG-4 video delivery algorithm over the lossy IEEE 802.11 WLANs to improve the video quality. Dublin Institute of Technology: School of Electronic and Communications Engineering.

    Google Scholar 

  118. Bianchi, G. (1998). IEEE 802.11-saturation throughput analysis. Communications Letters, IEEE, 2, 318–320.

    Article  Google Scholar 

  119. Chatzimisios, P., Boucouvalas, A. C., & Vitsas, V. (2004). Performance analysis of IEEE 802.11 DCF in presence of transmission errors. Presented at the International Conference on Communications.

  120. Bianchi, G., & Tinnirello, I. (2003). Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network. In INFOCOM’03.

  121. Vercauteren, T., Toledo, A. L., & Wang, X. (2007). Batch and sequential bayesian estimators of the number of active terminals in an IEEE 802.11 network. IEEE Transactions on Signal Processing, 55, 437–450.

    Article  MathSciNet  Google Scholar 

  122. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). London: Wiley.

    Google Scholar 

  123. Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering. Structural and multidisciplinary optimization, 26, 369–395.

    Article  MathSciNet  Google Scholar 

  124. Miettinen, K. (1999). Nonlinear multiobjective optimization (Vol. 12). New York: Springer.

    Google Scholar 

  125. Stanimirovic, I. P., Zlatanovic, M. L., & Petkovic, M. D. (2011). On the linear weighted sum method for multi-objective optimization. Facta Acta Universitatis, 26, 49–63.

    MathSciNet  Google Scholar 

  126. Houba, H., Tieman, A. F., & Brinksma, R. (1998). The Nash bargaining solution for decision weight utility functions. Economics Letters, 60, 41–48.

    Article  MathSciNet  Google Scholar 

  127. Jiang, A. X., & Leyton-Brown, K. (2009). A tutorial on the proof of the existence of Nash equilibria. University of British Columbia Technical Report TR-2007-25. pdf.

  128. Tanaka, K., & Kondo, E. (2005). A sample-based approach to lookup table construction by SVM active learning. In 2005 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 628–633).

  129. Hyde, R. (2010) The art of assembly language, 2nd Edition. No Starch Press.

Download references

Acknowledgments

This work is partially supported in finance by the Iran Telecommunication Research Center under Grant ITRC No. 18507/500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdieh Ghazvini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazvini, M., Movahhedinia, N. & Jamshidi, K. GCW: A Game Theoretic Contention Window Adjustment Approach for IEEE 802.11 WLANs. Wireless Pers Commun 83, 1101–1130 (2015). https://doi.org/10.1007/s11277-015-2441-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2441-z

Keywords

Navigation