Skip to main content
Log in

Offloading Multiple Mobile Data Contents Through Opportunistic Device-to-Device Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Opportunistic device-to-device (D2D) communication is the approach proposed to offload mobile data traffic for cellular networks. In opportunistic D2D communication, the network has to appoint relaying users to distribute content(s) to normal subscribers under a given delay-tolerance threshold. In general, the total number of relaying users is fixed. Identifying proper number of relaying users is one of the key challenges in opportunistic D2D communication. The network has to select proper number of relaying users for each content to minimize the amount of mobile data traffic. This paper presents a popularity-based relaying user selection algorithm to determine the number of relaying users for distributing multiple contents with different popularity. An analytical model is then presented to estimate the amount of reduced mobile data traffic under single-hop and multi-hop opportunistic forwarding scenarios. Results obtained by simulations as well as by our proposed analytical model show that the proposed popularity-based algorithm can find the total number of relaying users to the amount of reduced mobile data traffic. For services which have longer delay-tolerance threshold, the proposed popularity-based algorithm requires less relaying users and can achieve similar amount of reduced mobile data traffic as the state-of-the-art random fully-allocation algorithm does. For services which have shorter delay-tolerance threshold, the proposed popularity-based algorithm provide significant gain comparing with the random fully-allocation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Han, B., Hui, P., Kumar, V., Marathe, M., Shao, J., & Srinivasan, A. (2011). Mobile data offloading through opportunistic D2D communications and social participation. IEEE Transactions on Mobile Computing, 11(5), 821–834.

    Article  Google Scholar 

  2. Whitbeck, J., Lopez, Y., Leguay, J., Conan, V., & de Amorim, M. D. (2011). Relieving the wireless infrastructure: When opportunistic networks meet guaranteed delays. In Proceedings of the IEEE international symposium on a WoWMoM, Lucca, Italy.

  3. Li, Y., Su, G., Hui, P., Jin, D., Su, L., & Zeng, L. (2011). Multiple mobile data offloading through delay tolerant networks. In Proceedings of the 6th ACM workshop on challenged networks (CHANTS) (pp. 43–48).

  4. Bhatia, R., Narlikar, G., Rimac, I., & Beck, A. (2009). UNAP: User-centric network-aware push for mobile content delivery. In Proceedings of the IEEE INFOCOM (pp. 2034–2042).

  5. Chen, N. S., Chou, Y. F., Cheng, R. G., & Tsao, S. L. (2013 ). Multiple contents offloading through opportunistic communications. In Proceedings of the 12th international conference on telecommunications (ConTEL) (pp. 65–69), Zagreb, Croatia.

  6. Pelusi, L., Passarella, A., & Conti, M. (2006). Opportunistic networking: Data forwarding in disconnected mobile ad hoc networks. IEEE Communications Magazine, 44(11), 134–141.

    Article  Google Scholar 

  7. LeBrun, J., Chuah, C. N., Ghosal, D., & Zhang, M. (2005). Knowledge-based opportunistic forwarding in vehicular wireless ad hoc networks. In IEEE 61st vehicular technology conference (VTC 2005-Spring) (vol. 4, pp. 2289–2293).

  8. Hui, P., Crowcroft, J., & Yoneki, E. (2011). BUBBLE Rap: Social-based forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11), 1576–1589.

  9. Zhou, B., Hu, H., Huang, S., & Chen, H. (2013). Intra-cluster device-to-device relay algorithm with optimal resource utilization. IEEE Transaction on Vehicular Technology, 62(5), 2315–2326.

    Article  Google Scholar 

  10. Thilakarathna, K., Viana, A. C., Seneviratne, A., & Petander, H. (2013). Mobile social networking through friend-to-friend opportunistic content dissemination. In Proceedings of the ACM international symposium on mobile ad hoc networking and computing (MobiHoc’13) (pp. 563–266).

  11. Zhuo, X., Li, Q., Cao, G., Dai, Y., Szymanski, B., & Porta, T. L. (2011). Social-based cooperative caching in DTNs: A contact duration aware approach. In Proceedings of the IEEE mobile adhoc and sensor systems (MASS) (pp. 92–101).

  12. Content Marketing Tool BuzzSumo, http://buzzsumo.com

  13. Goemans, M., Li, L., Mirrokni, V. S., & Thottan, M. (2006). Market sharing games applied to content distribution in ad-hoc networks. IEEE Journal on Selected Areas in Communications, 24(5), 1020–1033.

    Article  Google Scholar 

  14. Kangasharju, J., Roberts, J. W., & Ross, K. W. (2002). Object replication strategies in content distribution networks. Computer Communications, 25(4), 376–383.

    Article  Google Scholar 

  15. 3GPP TS 25.346. (2014). Introduction of the multimedia broadcast/multicast service (MBMS) in the radio access network (RAN): Stage 2.

  16. Kutscher, D., et al. (2013). ICN research challenges. IETF Internet-Draft, draft-kutscher-icnrg-challenges-01.

  17. Pentikousis, K., et al. (2013). ICN baseline scenarios and evaluation methodology. IETF Internet-Draft, draft-pentikousis-icn-scenarios-04.txt.

Download references

Acknowledgments

This work was supported in part by the Ministry of Science and Technology of Taiwan under Contract MOST 102-2221-E-011-003-MY3 and by the “Aiming For the Top University Program” funded by Ministry of Education of Taiwan.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray-Guang Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, RG., Chen, NS., Chou, YF. et al. Offloading Multiple Mobile Data Contents Through Opportunistic Device-to-Device Communications. Wireless Pers Commun 84, 1963–1979 (2015). https://doi.org/10.1007/s11277-015-2492-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2492-1

Keywords

Navigation