Skip to main content
Log in

Efficient Image Communication in PAPR Distortion Cases

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a proposed method for Peak-to-Average Power Ratio (PAPR) reduction of Orthogonal Frequency Division Multiplexing (OFDM) signals based on discrete transforms is presented for robust image communication. One of the discrete transforms such as discrete wavelet transform, discrete cosine transform, or discrete sine transform is applied to modify the OFDM signal at the output of the inverse fast Fourier transform stage. We first present the proposed OFDM system model with trigonometric transforms for PAPR reduction. Trigonometric transforms improve the performance of the OFDM system, and reduce the PAPR of the OFDM signal. Then, this scheme has been utilized for progressive image transmission using low-density parity-check coded OFDM over frequency-selective fading channels. The set partitioning in hierarchical trees algorithm is used for source coding of the images to be transmitted. The proposed scheme effectively resists the fading impact of frequency-selective fading channels using simple frequency-domain equalization. Simulation experiments are performed for a variety of multipath fading channels. We also propose a chaotic interleaving scheme based on the 2-D chaotic Baker map for PAPR reduction of OFDM signals. The distinctive feature of this scheme is that the transmitted signal has less correlation between samples, and hence the PAPR is minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69

Similar content being viewed by others

References

  1. Harada, H., & Prasad, R. (2002) Simulation and software radio for mobile communications. Published by Artech House, 31 Mar. 2002, Universal Personal Communications library.

  2. Andrews, J. G., Ghosh, A., & Muhamed, R. (2007) Fundamentals of WiMAX: Understanding broadband wireless networking. Published by Prentice Hall.

  3. Prasad, R. (2004) OFDM for wireless communications systems. Artech House.

  4. Al-kamali, F. S., Dessouky, M. I., Sallam, B. M., Shawki, F., & Abd El-Samie, F. E. (2013). Impact of the power amplifier on the performance of the single carrier frequency division multiple access system. Telecommunication Systems, 52, 31–38.

    Article  Google Scholar 

  5. Mohammady, S., Sidek, R. M., Varahram, P., Hamidon, M. N., & Sulaiman, N. (2011) Study of PAPR reduction methods in OFDM Systems. In: Proceedings of advanced communication technology (ICACT), 2011, 13th international conference on Feb. 13–16, pp. 127–130.

  6. Jiang, T., & Wu, Y. (2008). An overview: peak-to-average power ratio reduction techniques for OFDM signals. IEEE Transactions on Broadcasting, 54(2), 257–268.

    Article  Google Scholar 

  7. Guel, D., & Palicot, J. (2009). Analysis and comparison of clipping techniques for OFDM peak-to-average power ratio reduction. In: Proceedings of ICDSP2009, on pp. 1.

  8. Kimura, S., Nakamura, T., Saito, M., & Okada, M. (2008). PAR reduction for OFDM signals based on deep clipping. In: Proceedings of 3rd international symposium on communications, control and signal processing, pp. 911–916.

  9. Boonsrimuang, P., Puttawong, E., Kobayashi, H., & Paungma, T. (2003) PAPR reduction using smooth clipping in OFDM system. In: The 3rd information and computer engineering postgraduate workshop 2003 (ICEP’2003), pp. 158–161.

  10. Kim, J., & Shin, Y. (2008). An effective clipped companding scheme for PAPR reduction of OFDM signals. In: Proceedings of the IEEE ICC’08, pp. 668–672.

  11. Jiang, T., Yao, W., Guo, P., Song, Y., & Qu, D. (2006). Two novel nonlinear companding schemes with iterative receiver to reduce PAPR in multi-carrier modulation systems. IEEE Transactions on Broadcasting, 51(2), 268–273.

    Article  Google Scholar 

  12. Jiang, Y. (2010). New companding transform for PAPR reduction in OFDM. IEEE Communication Letters, 14(4), 282–284.

    Article  Google Scholar 

  13. Wang, J., Guo, Y., & Zhou, X. (2009). PTS-clipping method to reduce the PAPR in ROF-OFDM system. IEEE Transactions on Consumer Electronics, 55(2), 356–359.

    Article  Google Scholar 

  14. Hassan, E. S., El-Khamy, S. E., Dessouky, M. I., El-Dolil, S. A., & Abd El-Samie, F. E. (2009). Peak-to-average power ratio reduction in space–time block coded multi-input multi-output orthogonal frequency division multiplexing systems using a small overhead selective mapping scheme. IET Communications, 3(10), 1667–1674.

    Article  Google Scholar 

  15. Jiang, T., & Zhu, G. (2005). Complement block coding for reduction in peak-to-average power ratio of OFDM signals. IEEE Communications Magazine, 43(9), S17–S22.

    Article  Google Scholar 

  16. Hsu, C. Y., & Do, H. G. (2006). The new peak-to- average power reduction algorithm in the OFDM system. Wireless Personal Communications, 41(4), 517–525.

    Article  Google Scholar 

  17. Hassan, E. S., Zhu, X., El-Khamy, S. E., Dessouky, M. I., El-Dolil, S. A., & Abd El-Samie, F. E. (2009) A continuous phase modulation single-carrier wireless system with frequency domain equalization. In: Proceedings of the IEEE international conference on computer engineering and systems (ICCES’09), Cairo, Egypt, 14–16.

  18. Mandyam, G. D. (2004). Interspread sinusoidal transforms for OFDM systems. In: Proceeding of ACSSC.2004, pp. 1025–1029.

  19. Qiao, Y., Wang, Y., Yu, S., & Wang, D. (2005) Robust progressive image transmission based on multi-rate turbo code and space-time OFDM. In: Proceedings of the ninth international symposium consumer electronics, (ISCE 2005), pp. 128–133.

  20. Guo, R., Zhou, P., & Liu, J. (2006). Joint source-channel coding based on adaptive wavelet pretreatment for image transmission over frequency selective fading channel. In: Proceedings of information acquisition (ICIA), pp. 1411–1415.

  21. Sun, Y., Wang, X., & Liu, K. J. R. (2002). A joint channel estimation and unequal error protection scheme for image transmission in wireless OFDM systems. In: Multimedia signal processing, 2002 IEEE, pp. 380–383.

  22. Wang, S., Dai, J., Hou, C., & Liu, X. (2006). Progressive image transmission over wavelet packet based OFDM. In: Proceedings of electrical and computer engineering Canadian conference (CCECE’06), pp. 950–953.

  23. Futaki, H., & Ohtsuki, T. (2001). Low-density parity-check (LDPC) coded OFDM systems. In IEEE VTC2001 fall, Vol. 1, pp. 82–86.

  24. Futaki, H., & Ohtsuki, T. (2002) Low-density parity-check (LDPC) Coded OFDM systems with M-PSK. In: Proceedings of IEEE VTC2002 spring, Vol. 2, pp. 1035–1039.

  25. Wu, X., Zhang, Z., Jiang, J., & Zhang, P. (2006) Performance of low-density parity-check (LDPC) coded OFDM system based on adaptive power allocation algorithm. In: Proceedings of ChinaCom’06, pp. 1–5.

  26. Li, Y., & Ryan, W. E. (2007). Mutual-information-based adaptive bit-loading algorithms for LDPC-coded OFDM. IEEE Transaction on Wireless Communication, 6, 1670–1680.

    Article  Google Scholar 

  27. Trifonov, P., Costa, E., & Schulz, E. (2005). Adaptive multilevel coding in OFDM systems. In: Proceedings of VTC 2005-Spring, Vol. 3, pp. 1566–1570.

  28. Yang, C. Y., & Ku, M. K. (2008) LDPC coded OFDM modulation for high spectral efficiency transmission. In: Proceedings of circuits and systems for communications, 2008 (ECCSC 2008), pp. 280–284.

  29. Yoshida, M., & Taniguchi, T. (2005). An LDPC-coded OFDM receiver with pre-FFT iterative equalizer for ISI channels. In: Proceedings of VETECS 2005, Vol. 2, pp. 767–772.

  30. Muta, O., & Akaiwa, Y. (2007). Peak power reduction method based on structure of parity-check matrix for LDPC coded OFDM transmission. In: VTC2007-Spring, pp. 2841–2845.

  31. Castello, D. J., Hagenauer, J., Imai, H., & Wicker, S. (1998). Applications of error control coding. IEEE Transactions on Information Theory, 44, 2531–2560.

    Article  Google Scholar 

  32. Shi, Y. Q., Zhang, X. M., Ni, Z.-C., & Ansari, N. (2004). Interleaving for combating bursts of errors. IEEE Circuts and Systems Magazine, 4, 29–42.

    Article  Google Scholar 

  33. Nguyen, V. D., & Kuchenbecker, H. (2001) Block interleaving for soft decision viterbi decoding in OFDM systems. In IEEE VTC, pp. 470–474.

  34. Hassan, E. S., Zhu, X., El-Khamy, S. E., Dessouky, M. I., El-Dolil, S. A., & Abd El-Samie, F. E. (2012). A chaotic interleaving scheme for continuous phase modulation based single-carrier frequency-domain equalization systems. Wireless Personal Communication, 62(1), 183–199.

    Article  Google Scholar 

  35. Sung, C. K., Chung, S. Y., Heo, J., & Lee, I. (2007). Adaptive bit-interleaved coded OFDM with reduced feedback information. IEEE Transactions on Communications, 55(9), 1649–11655.

    Article  Google Scholar 

  36. Malathi, P., & Vanathi, P. T. (2008) Improved interleaving technique for PAPR reduction in OFDM-MIMO system. In: Proceedings of second Asia international conference, pp. 253–258.

  37. Hassan, E. S., et al. (2009) New interleaving scheme for CE-OFDM systems using chaotic maps. In: Wireless and optical communications networks, 2009, WOCN’09, IFIP international conference on IEEE.

  38. Cho, Y., & Pearlman, W. A. (2007). Quantifying the performance of zerotrees of wavelet coefficients: Degree-K Zerotree model. IEEE Transactions on Signal Processing, 55(1), 2425–2431.

    Article  MathSciNet  Google Scholar 

  39. AsifKhan, M., Asim, M., Leoti, V., & Manzoor, R. S. (2008) Chaos based constellation scrambling in OFDM systems: Security & interleaving issues. In: Proceedings of ITSim 2008, Vol. 4, pp. 1–7.

  40. Luengo, D., & Santamar, I. (2005). Secure communications using OFDM with chaotic modulation in the subcarriers. In: Proceedings of VETECS 2005, Vol. 2, pp. 1022–1026.

  41. Soliman, N. F., Shaalan, A. A., El-Rabaie, S., & Abd El-samie, F. E. (2009). Peak power reduction of OFDM signals using chaotic baker maps. In: Proceedings of the international conference on computer engineering & systems (ICCES), Cairo, Egypt, pp. 593–598.

  42. Hassan, E. S., El-Khamy, S. E., Dessouky, M. I., El-Dolil, S. A., Abd El-Samie, F. E. (2009) New interleaving scheme for continuous phase modulation based OFDM systems using chaotic maps. In: Proceedings of WOCN-09, Cairo, Egypt, pp. 28–30.

  43. Matthews, R. (1989). On the derivation of a chaotic encryption algorithm. Cryptologia, XIII(1), 29–42.

    Article  MathSciNet  Google Scholar 

  44. Deffeyes, K. S. (1991). Encryption system and method. US Patent, no. 5001754, March 1991.

  45. Fridrich, J. (1998). Symmetric ciphers bbased on two-dimensional chaotic maps. International Journal of Bifurcation and Chaos, 8, 1259–1284.

    Article  MathSciNet  Google Scholar 

  46. Han, F., Yu, X., & Han, S. (2006). Improved baker map for image encryption. In ISSCAA, pp. 1273–1276.

  47. Soliman, N. F., Shaalan, A. A., El-Rabaie, S., & Abd El-samie, F. E. (2009) Peak power reduction of OFDM signals using trigonometric transforms. In: Proceedings of the international conference on computer engineering & systems (ICCES), Cairo, Egypt, pp. 333–337.

  48. Hassan, E. S., El-Khamy, S. E., Dessouky, M. I., El-Dolil, S. A., Abd El-Samie, F. E. (2010). Peak to average power ratio distribution for OFDM signals with unequal power distribution strategy. In Proceedings of NRSC-10, Egypt, March 16–18.

  49. Hassan, E. S., et al. (2013). Chaotic interleaving scheme for single-and multi-carrier modulation techniques implementing continuous phase modulation. Journal of the Franklin Institute, 350, 770–789.

    Article  Google Scholar 

  50. Erceg, V., et al. (2001) Channel models for fixed wireless applications. IEEE 802.16a cont. IEEE 802.16.3c-01/29r1.

  51. Kameda, S., Oguma, H., Izuka, N., Asano, Y., Yamazaki, Y., Takagi, T., & Tsubouchi, K. (2010). Issue of IEEE 802.20 vehicular-a delay profile model on estimating received signal level variation of wideband signal. In: Proceedings of EuCAP 2010, pp. 1–5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathi E. Abd El-Samie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, N.F., Hassan, E.S., Shaalan, A.H.A. et al. Efficient Image Communication in PAPR Distortion Cases. Wireless Pers Commun 83, 2773–2834 (2015). https://doi.org/10.1007/s11277-015-2568-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2568-y

Keywords

Navigation