Skip to main content
Log in

Implication of LDPC Technique in Non-ideal Multiuser Communication System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The present paper analyzes the effect of LDPC coding on the performances of a CDMA DS-SS multiuser system. Two types of detectors are analyzed, namely the conventional matched filter and the MMSE ones, in the ideal case—when the spreading codes are perfectly orthogonal and in a non-ideal one—when the users are more or less intercorrelated. Regarding the communication channel, several cases have been taken into consideration, from pure AWGN or Gaussian Mixture Noise to Rayleigh and Rice fading with different parameters. A large number of simulations have been performed using the Monte Carlo technique and the results are summarized and compared in the final part. Based on those results a number of interesting conclusions are highlighted in the Conclusion section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ravindrababu, J., Krishna Rao, E. V., & Raja Rao, Y. (2012). Performance analysis and comparison of spreading codes in linear multi-user detectors for DS-CDMA system. WSEAS Transactions on Communications, 11(11). E-ISSN: 2224-2864.

  2. Lee, K., Azurdia-Meza, C. A., & Seo, H. (2014). Efficient channel allocation algorithm with partial CSI for the PB/MC-CDMA system. Wireless Personal Communications. Print ISSN 0929-6212.

  3. Eslami, A., & Keshavarz, H. (2014). User capacity scaling laws of multi-user fading channels in the presence of MMSE channel estimators. Wireless Personal Communications, 77(4), 2465–2482.

    Article  Google Scholar 

  4. Zahedi, A., & Bakhshi, H. (2013). Multiuser detection based on adaptive LMS and modified genetic algorithm in DS-CDMA communication systems. Wireless Personal Communications, 73(3), 931–947.

    Article  Google Scholar 

  5. Singh, A., & Chandran, H. (2012). Low complexity FEC systems for satellite communication. Network Protocols and Algorithms, 4(1). ISSN 1943-3581.

  6. Yuem, G., & Wang, X. (2004). Coding-spreading tradeoff in LDPC-coded CDMA with turbo multiuser detection. IEEE Transactions on Wireless Communications. 1734–1745. ISSN: 1536-1276.

  7. Shin, J. H., Noh, K., Sung, W., & Heo, J. (2012). Simple and accurate design of low-density parity-check codes for multi-input multi-output systems. Wireless Personal Communications, 62(4), 923–936.

    Article  Google Scholar 

  8. Wang, X., Yue, G., & Narayanan, K. R. (2005). Optimization of LDPC-coded turbo CDMA systems. IEEE Transactions on Signal Processing, 53(4), 1500–1510.

    Article  MathSciNet  Google Scholar 

  9. Li, H., Betz, S. M., & Poor, H. V. (2007). Performance analysis of iterative channel estimation and multiuser detection in multipath DS-CDMA channels. IEEE Transactions on Signal Processing, pp. 1981–1993. ISSN: 1053-587X.

  10. Yang, X., & Lee, M. H. (2006). Low complexity MIMO-LDPC CDMA systems over multipath channels. IEICE Transactions on Communications, E89-B(5), 1713–1717. Print ISSN: 0916-8516.

  11. Sklar, B. (1997). Rayleigh fading channels in mobile digital communication systems part 1: Characterization. IEEE Communications, 35(7), 90–100.

    Article  Google Scholar 

  12. Kumar, S., Gupta, P. K., Singh, G., & Chauhan, D. S. (2013). Performance analysis of Rayleigh and Rician fading channel models using Matlab simulation. I.J. Intelligent Systems and Applications. 09, 94-102, Published Online August 2013 in MECS (http://www.mecs-press.org/). doi:10.5815/ijisa.2013.09.11

  13. Awon, N. T., Islam, A., Rahman, M., & Touhidul Islam, A. Z. M. (2012). Effect of AWGN & fading (Raleigh & Rician) channels on BER performance of a WiMAX communication system. International Journal of Computer Science and Information Security (IJCSIS), 10(8). 11–17.

  14. Arsal, A. (2008). A study on wireless channel models: Simulation of fading, shadowing and further applications. Master of Science Thesis at School of Engineering and Sciences of Izmir Institute of Technology.

  15. Tawalbeh, S. M., & Banat, M. M. (2011). Simulation of doubly selective fading channels using autoregressive modeling and optimum receiver design. In IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT). December 6–8, 2011. Print ISBN 978-1-4577-1083-4.

  16. Viswanathan, M. (2013). Simulation of digital communication systems using Matlab [eBook]. http://www.gaussianwaves.com/simulation-of-digitalcommunication-systems-using-matlab-ebook/

  17. Kumar, P. S., Sumithra, M. G., & Sarumathi, M. (2013). Performance comparison of Rayleigh and Rician fading channels in QAM modulation scheme using simulink environment. International Journal of Computational Engineering Research, 03(5), 56–62.

    Google Scholar 

  18. Murthy, P. N., & Satyanarayana, R. V. S. (2010). A comparison of Rayleigh and Rician fading channels under frequency-selective fading. IUP Journal of Electrical & Electronics Engineering, III(4), 44–50.

    Google Scholar 

  19. Jayaweera, S. K., & Poor, H. V. (2003). MIMO capacity results for Rician fading channels. In IEEE Global Telecommunications Conference (GLOBECOM ‘03), pp. 1806–1810. ISBN:0-7803-7974-8.

  20. Kostov, N. (2003). Mobile radio channels modeling in MATLAB. RadioEngineering, 12(4), 12–16.

    MathSciNet  Google Scholar 

  21. Proakis, J. G. (1989). Digital communications (2nd ed.). New York: McGraw-Hill.

    MATH  Google Scholar 

  22. Salhab, A. M., Al-Qahtani, F. S., Zummo, S. A., & Alnuweiri, H. (2014). Performance analysis of amplify-and-forward relay systems with interference-limited destination in various Rician fading channels. Wireless Personal Communications, 53(4), 591–602. Print ISSN 0929-6212.

  23. Blum, R. S., Zhang, Y., Sadler, B. M., & Kozick, R. J. (1999). On the approximation of correlated non-Gaussian noise Pdfs using Gaussian mixture models. Washington, DC: American University.

    Google Scholar 

  24. Essai, M. H., Zahra, M., & Mohammed, A. (2013). Study and analysis the BER performance of linear multiuser detectors in non-Gaussian noise channel. International Journal of Engineering Development and Research 1(3), 332–342. ISSN 2321-9939.

  25. Shakya, I. L., Ali, F. H., & Stipidis, E. (2011). High user capacity collaborative code-division multiple access. IET Communications, 5(3), 307–319.

    Article  Google Scholar 

  26. Cruselles, E. J., Soriano, M., & Melús, J. L. (1998). Spreading codes generator for wireless CDMA networks. Wireless Personal Communications, 7(1), 69–88.

    Article  Google Scholar 

  27. Mitra, A. (2008). On pseudo-random and orthogonal binary spreading sequences. World Academy of Science, Engineering and Technology, 2. December 12, 2008.

  28. Srivastava, D., & Prasad, R. K. (2013). Spreading codes performance for correlation function using MATLAB. International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD), 3(2), 15–24. ISSN 2249-684X.

  29. Sanusi, S. O., Smith, D. H., Jones, R. A., & Perkins, S. (2010). The application of Frequency assignment techniques in spreading code assignment. Wireless Personal Communications, 54(3), 397–415.

    Article  Google Scholar 

  30. Raihan, S. R. S., & Ng, B. C. (2008). DS-CDMA system with linear multiuser detection in AWGN channel. Georgian Electronic Scientific Journal: Computer Science and Telecommunications, 1(15), 25–36.

    Google Scholar 

  31. Halunga, S., Marcu, I., Fratu, O., & Marghescu, I. (2009). Orthogonality, amplitude and number of users effects on conventional multiuser detection using turbo decoding. EUROCON 2009, 18–23 May 2009, Sankt Petersburg, Rusia, pp. 2000–2004.

  32. Marcu, I., Halunga, S., Fratu, O., & Vizireanu, D. (2011). Multiuser systems implementations in fading environments. In Applications of MATLAB in science and engineering (pp. 166–179). InTech. ISBN 978-953-307-708-6.

  33. Gallager, R. (1962). Low-density parity-check codes. IEEE Transactions on Information Theory, 8(1), 21–28.

    Article  MathSciNet  MATH  Google Scholar 

  34. Sun, J. (2003). An introduction to low density parity check (LDPC) codes. Wireless Communication Research Laboratory (WCRL). Lane Department of Computer. Science and Electrical Engineering, West Virginia University.

  35. Azmi, P., & Zand, T. S. (2012). An iterative multiuser detector for overloaded LDPC coded CDMA systems. Wireless Personal Communications, 66(1), 41–56.

    Article  Google Scholar 

  36. Leiner, B. M. J. (2005). LDPC codes—A brief tutorial. http://www.bernh.net/media/download/papers/ldpc.pdf

  37. Qian, C., Lei, W., & Wang, Z. (2013). Low complexity LDPC decoder with modified sum-product algorithm. Tsinghua Science and Technology, 18(1), 57–61, Article ID6449408.

  38. Linh, N. T. D., Wang, G., Jia, M., & Rugumira, G. (2012). Performance evaluation of sum product and min-sum stopping node algorithm for LDPC decoding. Information Technology Journal, 11(9), 1298.

    Article  Google Scholar 

  39. Jiang, M., Zhao, C., Shi, Z., & Chen, Y. (2005). An improvement on the modified weighted bit-flipping decoding algorithm for LDPC codes. IEEE Communications Letters, 9, 814–816.

    Article  Google Scholar 

  40. Miladinovic, N., & Fossorier, M. P. (2005). Improved bit-flipping decoding of low-density parity-check codes. IEEE Transactions on Information Theory, 51(4), 1594–1606.

    Article  MathSciNet  MATH  Google Scholar 

  41. Huang, Q., Kang, J., Zhang, L., & Lin, S. (2009). Two efficient and low-complexity iterative reliability-based majority-logic decoding algorithms for LDPC codes. IEEE Information Theory Workshop (ITW 2009), pp. 253–257. Print ISBN: 978-1-4244-4982-8.

  42. Marcu, I. M., & Halunga, S. V. (2014). LDPC vs turbocodes behavioral analysis in multiuser DS-CDMA systems. In Proceedings of international symposium on electronics and telecommunications ETC 2014 (11th ed.). Timişoara, pp. 135–139, November 14–15, 2014. ISBN 978-1-4799-7265-4.

Download references

Acknowledgments

This work has been funded by the Sectorial Operational Programme Human Resources Development 2007–2013 of the Ministry of European Funds through the Financial Agreement POSDRU/159/1.5/S/132397 and by UEFISCDI - PNCDI 2 “Partnership” through the SaRaT-IWSN project no. 20/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona V. Halunga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcu, I., Halunga, S.V. Implication of LDPC Technique in Non-ideal Multiuser Communication System. Wireless Pers Commun 87, 797–814 (2016). https://doi.org/10.1007/s11277-015-2627-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2627-4

Keywords

Navigation