Skip to main content
Log in

Performance Analysis of the IEEE 802.16 Uplink for Best-Effort Traffic

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The IEEE 802.16 has a reservation based, centralized approach for allocating bandwidth on the upstream channel. In this paper, we proposed a queue length based weighted round robin (QL-WRR) scheduling algorithm to assess the efficient usage of upstream bandwidth of the IEEE 802.16 MAC protocol. This scheduling algorithm provides fairness. In QL-WRR scheduling algorithm, the scheduler takes the arrival rates of packets at the SS’s into account. A mathematical model is developed to determine the probability transmission by an SS, and probability of collision in a minislot. These parameters are used to obtain the uplink performance. The proposed mathematical model allows the dynamic variation of ratio between contention and data minislots according to the network load to improve the uplink utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. IEEE P802.11. (1997). Draft standard for wireless LAN medium access control (MAC) and physical layer (PHY) specifications. In IEEE.

  2. IEEE Standard. (1999). 802.11b-1999 part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. In Higher-speed physical extension in the 2.4 GHz band, IEEE.

  3. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  4. IEEE 802.16-2001. (2002). IEEE standard for local and metropolitan area networks—Part 16: Air interface for fixed broadband wireless access systems for 10–66 GHz.

  5. IEEE P802.16a/D3-2001. (2002). Draft amendment to IEEE standard for local and metropolitan area networks—Part 16: Air interface for fixed wireless access systems—Medium access control modifications and additional physical layers specifications for 2–11 GHz.

  6. IEEE 802.16d. (2004). Draft IEEE standard for local and metropolitan area networks—Part 16: Air interface for fixed broadband wireless access systems.

  7. IEEE Draft Std 802.16e/D7. (2005). Draft IEEE standard for local and metropolitan area networks part 16: Air interface for fixed and mobile broadband wireless access systems. In IEEE P802.16e/D7.

  8. Honcharenko, W., Kruys, J. P., Lee, D. Y., & Shah, N. J. (1997). Broadband wireless access. IEEE Communications Magazine, 35, 20–26.

  9. Boleskei, H., Paulraj, A. J., Hari, K. V., & Nabar, R. U. (2001). Fixed broadband wireless access: State of the art, challenges, and future directions. IEEE Communications Magazine, 39, 100–108.

  10. Eklund, C., Marks, R. B., Stanwood, K. L., & Wang, S. (2002). IEEE standard 802.16: A technical overview of the wireless \(MAN^{TM}\) air interface for broadband wireless access. IEEE Communications Magazine, 40, 98–107.

  11. Wongthavarawat, K., & Ganz, A. (2003). Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems. International Journal of Communication Systems, 16, 81–96.

    Article  Google Scholar 

  12. Wang, H., He, B., & Agrawal, D. P. (2007). Above packet level admission control and bandwidth allocation for IEEE 802.16 wireless MAN. Journal of Simulation Modeling Practice and Theory, 15, 366–382.

    Article  Google Scholar 

  13. Hou, F., Ho, P.-H., & Shen, X. (2006). Performance analysis of a reservation based connection admission scheme. In Proceedings of IEEE GLOBECOM (pp. 1–5).

  14. Niyato, D., & Hossain, E. (2006). Queue-aware uplink bandwidth allocation and rate control for polling service in IEEE 802.16broadband wireless networks. IEEE Transactions on Mobile Computing, 5(6), 668–679.

    Article  Google Scholar 

  15. Cho, D.-H., Song, J.-H., Kim, M.-S., & Han, K.-J. (2005). Performance analysis of the IEEE 802.16 wireless metropolitan area network. In Proceedigns of DFMA (pp. 130–136).

  16. Oh, S.-M., & Kim, J.-H. (2005). The analysis of the optimal contention period for broadband wireless access networks. In 3rd Proceedings of PerCom 2005 workshops (pp. 215–219).

  17. Vinel, A., Zhang, Y., Lott, M., & Tiurlikov, A. (2005). Performance analysis of the random access in IEEE 802.16. In Proceedings of 16th IEEE international symposium on personal, indoor and mobile radio communications (PIMRC’05) (Vol. 3, pp. 1596–1600). Berlin, Germany, Sep. 2005.

  18. Doha, A., Hassanein, H., & Takahara, G. (2006). Performance evaluation of reservation medium access control in IEEE 802.16 networks. In IEEE International conference on computer systems and applications (pp. 369–374).

  19. He, J., Guild, K., Yang, K., & Chen, H.-H. (2007). Modeling contention based bandwdith request scheme for IEEE 802.16 networks. IEEE Communications Letters, 11(8), 698–700.

    Article  Google Scholar 

  20. Chen, L.-W., & Tseng, Y.-C. (2008). Design and analysis of contention-based request schemes for best-effort traffics in IEEE 802.16 networks. IEEE Communications Letters, 12(8), 602–604.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Bhandari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, B.N., Raja Kumar, R.V. & Maskara, S.L. Performance Analysis of the IEEE 802.16 Uplink for Best-Effort Traffic. Wireless Pers Commun 84, 623–641 (2015). https://doi.org/10.1007/s11277-015-2653-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2653-2

Keywords

Navigation