Skip to main content
Log in

Performance Analysis of Adaptive Chaos Based CDMA System with Antenna Diversity in Frequency Selective Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents the theoretical analysis of the adaptive multiuser DS-CDMA system with antenna diversity in frequency selective channel environment. Pilot symbols are added to users’ data to estimate the complex fading coefficients. Least mean square algorithm is used for estimating the channel coefficients. Performance of receiver antenna diversity using maximal ratio combining is investigated. Effect of channel estimation and intersymbol interference is studied analytically and probability of error in closed form is derived. Under the perfect synchronization assumption, simulation results show that the performance of system deteriorates with increase in number of multipaths components and can be improved using antenna diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Sklar, B. (1997). Rayleigh fading channels in mobile digital communication systems part I: Characterization. IEEE Communications Magazine, 35(7), 90–100.

    Article  Google Scholar 

  2. Sklar, B. (1997). Rayleigh fading channels in mobile digital communication systems part II: Mitigation. IEEE Communications Magazine, 35(9), 148–155.

    Article  Google Scholar 

  3. Rovatti, R., Mazzini, G., & Setti, G. (2001). Enhanced RAKE receivers for chaos-based DS-CDMA. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(7), 818–829.

    Article  Google Scholar 

  4. Kao, J.-H., Berber, S. M., & Kecman, V. (2010). Blind multiuser detector for chaos-based CDMA using support vector machine. IEEE Transactions on Neural Networks, 21(8), 1221–1231.

    Article  Google Scholar 

  5. Berber, S. (2014). Probability of error derivatives for binary and chaos-based CDMA systems in wide-band channels. IEEE Transactions on Wireless Communications, 13(10), 5596–5606.

  6. Mazzini, G., Setti, G., & Rovatti, R. (1997). Chaotic complex spreading sequences for asynchronous DS-CDMA. I. System modeling and results. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 44(10), 937–947.

    Article  MathSciNet  Google Scholar 

  7. Sandhu, G. S., & Berber, S. M. Investigation on orthogonal signals for secure transmission in multiuser communication. Proceedings of the 2006 International Conference on Wireless Broadband and Ultra Wideband Communication (AusWireless06), Sydney, Australia.

  8. Vali, R., Berber, S. M., & Nguang, S. K. (2010). Effect of Rayleigh fading on non-coherent sequence synchronization for multi-user chaos based DS-CDMA. Signal Processing, 90(6), 1924–1939.

    Article  MATH  Google Scholar 

  9. Coulon, M., & Roviras, D. (2009). Multi-user receivers for synchronous and asynchronous transmissions for chaos-based multiple-access systems. Signal Processing, 89(4), 583–598.

    Article  MATH  Google Scholar 

  10. Coulon, M., & Roviras, D. (2010). Multi-user receivers for a multiple-access system based on chaotic sequences on unknown asynchronous frequency-selective channels. Signal Processing, 90(2), 587–598.

    Article  MATH  Google Scholar 

  11. Kaddoum, G., & Gagnon, F. (2013). Performance analysis of STBC-CSK communication system over slow fading channel. Signal Processing, 93(7), 2055–2060.

    Article  Google Scholar 

  12. Kaddoum, G., Coulon, M., Roviras, D., & Charg, P. (2010). Theoretical performance for asynchronous multi-user chaos-based communication systems on fading channels. Signal Processing, 90(11), 2923–2933.

    Article  MATH  Google Scholar 

  13. Haykin, S. (2002). Adaptive filter theory (4 ed.). Upper Saddle River: N.J. Prentice Hall.

  14. Kaddoum, G., Roviras, D., Charg, P., & Fournier-Prunaret, D. (2009). Robust synchronization for asynchronous multi-user chaos-based DS-CDMA. Signal Processing, 89(5), 807–818.

    Article  MATH  Google Scholar 

  15. Jovic, B., Unsworth, C., Sandhu, G. S., & Berber, S. M. (2007). A robust sequence synchronization unit for multi-user DS-CDMA chaos-based communication systems. Signal Processing, 87(7), 1692–1708.

    Article  MATH  Google Scholar 

  16. Lau, F. C., & Chi, K. T. (2003). Chaos-based digital communication systems: Operating principles, analysis methods, and performance evaluation. Berlin: Springer.

    Book  Google Scholar 

  17. Chen, L.-M., Chen, B.-S., & Hou, W.-S. (2001). Adaptive multiuser DFE with Kalman channel estimation for DS-CDMA systems in multipath fading channels. Signal Processing, 81(4), 713–733.

    Article  MATH  Google Scholar 

  18. Kaddoum, G., Charg, P., Roviras, D., & Fournier-Prunaret, D. (2007). Comparison of chaotic sequences in a chaos based DS-CDMA system. In: Proceedings of the International Symposium on Nonlinear Theory and its Applications, Vancouver, Canada.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meher Krishna Patel.

Appendices

Appendix 1: LMS Algorithm

In this research work, extracted pilot symbols are normalized by \(\sum \nolimits _{k = 2(i - 1)\beta +1 }^{k = 2i\beta } {\left( {x_k^{p} } \right) ^2 }\)before estimation process. Therefore LMS algorithm for this particular system can be represented as

$$\begin{aligned}&e_{i,m} = z_{i}^{mp}\bigg /\sum \limits _{k = 2(i - 1)\beta +1 }^{k = 2i\beta } {\left( {x_k^{p} } \right) ^2 } - \hat{a}_{i,m} e^{j\hat{\phi }_{i,m} } \end{aligned}$$
(21)
$$\begin{aligned}&\hat{a}_{i + 1,m} e^{j\hat{\phi }_{i + 1,m} } = \hat{a}_{i,m} e^{j\hat{\phi }_i } + \mu e_{i,m} \end{aligned}$$
(22)

where \(z_{i}^{mp}\) is the extracted pilot symbol. \(e_{i,m}\) and \(\mu \) are known as error and step size in estimation theory [13].

Appendix 2: Derivation of Eq. (12)

Since the chaotic spreading sequences and AWGN noise are zero mean uncorrelated processes. Hence

$$\begin{aligned}&{E\left[ {Z_i^{g}\;\left| {\;\gamma _i^{g} = 1} \right. } \right] = 2\beta E\left[ {{{\left( {x_k^{g}} \right) }^2}} \right] \times }\nonumber \\&\quad {\sum \limits _{m = 1}^M {{a_{i,m,0}}{{\hat{a}}_{i,m,0}}\cos ({\phi _{i,m,0}} - {{\hat{\phi }}_{i,m,0}})} }\nonumber \\&\quad { = 2\beta {P_c}\sum \limits _{m = 1}^M {{a_{i,m,0}}{{\hat{a}}_{i,m,0}}\cos ({\phi _{i,m,0}} - {{\hat{\phi }}_{i,m,0}})} } \end{aligned}$$
(23)

All the four terms in (5) are uncorrelated to each other, hence \({\mathop {\mathrm{var}}} \left[ {Z_i^{g} \;\left| {\;\gamma _i^{g} = 1} \right. } \right] \) is given by

$$\begin{aligned} {\mathrm{var[}}Z_i^{g}\;\left| {\;\gamma _i^{g}=1} \right. ] = {\mathrm{var[}}Z_i^{ag}] + {\mathrm{var[}}Z_i^{bg}] + {\mathrm{var[}}Z_i^{cg}]+{\mathrm{var[}}Z_i^{dg}] \end{aligned}$$
(24)

Variance of the first term \(Z_i^{ag}\) can be written as

$${\mathop {\mathrm{var}}} Z_i^{ag} = 2\beta \left[ {{\mathrm{var}}{{\left( {x_k^g} \right) }^2}} \right] {\left\{ {\sum \limits _{m = 1}^M {{a_{i,m,0}}{{\hat{a}}_{i,m,0}}\cos ({\phi _{i,m,0}} - {{\hat{\phi }}_{i,m,0}})} } \right\} ^2} $$
(25)

Channel is assume to slowly varying therefore we can assume that \({h_{i - {\tau _l},m,l}} \approx {h_{i,m,l}}\). Under this assumption, since chaotic sequences are uncorrelated with it’s shifted version therefore

$${\mathop {\mathrm{var}}} Z_i^{bg} = 2\beta P_c^2{\left\{ {\sum \limits _{m = 1}^M {\sum \limits _{l = 1}^{L - 1} {{a_{i,m,l}}{{\hat{a}}_{i,m,0}}\cos ({\phi _{i,m,l}} - {{\hat{\phi }}_{i,m,0}})} } } \right\} ^2} $$
(26)

Since all the chaotic sequences are uncorrelated hence variance of \(Z_i^{cg}\) will be

$${\mathop {\mathrm{var}}} Z_i^{cg} = 2\beta NP_c^2{\left\{ {\sum \limits _{m = 1}^M {\sum \limits _{l = 1}^{L - 1} {{a_{i,m,l}}{{\hat{a}}_{i,m,0}}\cos ({\phi _{i,m,l}} - {{\hat{\phi }}_{i,m,0}})} } } \right\} ^2} $$
(27)

Real and Imaginary part of complex AWGN have power spectral density equal to \(N_0 /2\) and independent to chaotic sequences, therefore variance of \(Z_i^{dg}\) can be defined as

$$\begin{aligned} {\mathop {\mathrm{var}}} Z_i^{dg}&= {\mathrm{var}}\left[ {\sum \limits _{m = 1}^M {{{\hat{a}}_{i,m,0}}\cos ({{\hat{\phi }}_{i,m,0}})} } \right. \sum \limits _{k = 2(i - 1)\beta + 1}^{2i\beta } {{\mathrm{Re}}({\xi _{k,m}})x_k^g} \nonumber \\ & \quad+ \sum \limits _{m = 1}^M {{{\hat{a}}_{i,m,0}}\sin ({{\hat{\phi }}_{i,m,0}})} \left. {\sum \limits _{k = 2(i - 1)\beta + 1}^{2i\beta } {{\mathrm{Im}}({\xi _{k,m}})x_k^g} } \right] \nonumber \\&= \beta {N_0}{P_c}\sum \limits _{m = 1}^M {\hat{a}_{i,m,0}^2} \end{aligned}$$
(28)

Putting Eqs. (23), (25), (26), (27) and (28) in Eq. (11) and after rearranging the equation we have Eq. (12).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, M.K., Berber, S.M. & Sowerby, K.W. Performance Analysis of Adaptive Chaos Based CDMA System with Antenna Diversity in Frequency Selective Channel. Wireless Pers Commun 84, 1439–1448 (2015). https://doi.org/10.1007/s11277-015-2696-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2696-4

Keywords

Navigation