Skip to main content
Log in

Design of Azimuthally Periodic Wedge-Shaped Circular Ring Bandpass Frequency Selective Surface Using Transmission-Line Method

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, an azimuthally periodic wedge-shaped circular aperture frequency selective surface (FSS) is discussed, which provides the dual polarized and angular stable frequency response with significantly more fractional bandwidth (FBW) up to 50° angle-of-incidence (AOI) at S-band, Ku-band and Ka-band. In addition to this, the equivalent circuit (EC) parameters of proposed bandpass FSS structure are obtained using the transmission-line approach, which are further utilized to compute the geometrical parameters of the proposed bandpass FSS structure at 3, 15 and 25 GHz. The numerical results computed by transmission-line approach are supported with the simulation results, which have been obtained using commercially available simulators such as CST Microwave Studio (finite integral technique) and Ansoft HFSS (finite element method) at each frequency of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Munk, B. A. (2000). Frequency selective surface: Theory and design (1st ed.). New York: Wiley.

    Book  Google Scholar 

  2. Zhang, L., Yang, G., Wu, Q., & Hua, J. (2012). A novel active frequency selective surface with wideband tuning range for EMC purpose. IEEE Transactions on Magnetics, 48(11), 4534–4537.

    Article  Google Scholar 

  3. Te-Kao, W. (1994). Four-band frequency selective surface with double-square-loop patch elements. IEEE Transactions on Antennas and Propagation, 42(12), 1659–1663.

    Article  Google Scholar 

  4. Bharti, G., Jha, K. R., Singh, G., & Jyoti, R. (2015). Design of angular and polarization stable modified circular ring frequency selective surface for satellite communication. International Journal of Microwave and Microwave Technologies. doi: 10.1017/S1759078715000331.

  5. Gustafsson, M., Karlsson, A., Rebelo, A. P., & Widenberg, B. (2006). Design of frequency selective windows for improved indoor outdoor communication. IEEE Transactions on Antennas and Propagation, 54(6), 1897–1900.

    Article  Google Scholar 

  6. Mias, C. Tsokonas, C. & Oswald, C. (2002). An investigation into the feasibility of designing frequency selective windows employing periodic structures. Technical report AY3922, The Nottingham Trent University, Burton Street, Nottingham, NG1 4BU, U.K.

  7. Costa, F., Amabile, C., Monorchio, A., & Prati, E. (2011). Waveguide dielectric permittivity measurement technique based on resonant FSS filters. IEEE Microwave and Wireless Components Letters, 21(5), 273–275.

    Article  Google Scholar 

  8. Genovesi, S., Costa, F., & Monorchio, A. (2012). Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 60(5), 2327–2335.

    Article  Google Scholar 

  9. Raspopoulos, M., & Stavrou, S. (2011). Frequency selective buildings through frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 59(8), 2998–3005.

    Article  Google Scholar 

  10. Izquierdo, B. S., Parker, E. A., & Batchelor, J. C. (2011). Switchable frequency selective slot arrays. IEEE Transactions on Antennas and Propagation, 59(7), 2728–2731.

    Article  Google Scholar 

  11. Li, B., & Shen, Z. (2014). Bandpass frequency selective structure with wideband spurious rejection. IEEE Antennas and Wireless Propagation Letters, 13, 145–148.

    Article  Google Scholar 

  12. Bardi, I., Remski, R., Perry, D., & Cendes, Z. (2002). Plane wave scattering from frequency-selective surfaces by the finite-element method. IEEE Transactions on Magnetics, 38(2), 641–644.

    Article  Google Scholar 

  13. Mittra, R., Chan, C. H., & Cwik, T. (1988). Techniques for analyzing frequency selective surfaces: A review. Proceedings of the IEEE, 76(12), 1593–1615.

    Article  Google Scholar 

  14. Orta, R., Tascone, R., & Zich, R. (1985). A unified formulation for the analysis of general frequency selective surfaces. Electromagnetics, 5(4), 307–329.

    Article  Google Scholar 

  15. Bozzi, M., & Perregrini, L. (1999). Efficient analysis of thin conductive screens perforated periodically with arbitrarily shaped apertures. IEE Electronics Letters, 35(13), 1085–1087.

    Article  Google Scholar 

  16. Hsieh, L. H., & Chang, K. (2002). “Equivalent lumped elements G, L, C, and unloaded Q’s of closed- and open-loop ring resonators. IEEE Transactions on Microwave Theory and Techniques, 50(2), 453–460.

    Article  Google Scholar 

  17. Langley, R. J., & Parker, E. A. (1983). Double-square frequency-selective surfaces and their equivalent circuit. IEE Electronics Letters, 19(17), 675–677.

    Article  Google Scholar 

  18. Jha, K. R., Singh, G., & Jyoti, R. (2012). A simple synthesis technique of single square loop frequency selective surface. Progress in Electromagnetic Research B, 45, 165–185.

    Article  Google Scholar 

  19. Costa, F., Monorchio, A., & Manara, G. (2012). Efficient analysis of frequency selective surfaces by a simple equivalent-circuit model. IEEE Antennas and Propagation Magazine, 54(4), 35–48.

    Article  Google Scholar 

  20. Yao, X., Bai, M., & Miao, J. (2011). Equivalent circuit method for analyzing frequency selective surface with ring patch in oblique angles of incidence. IEEE Antennas and Wireless Propagation Letters, 10, 820–823.

    Article  Google Scholar 

  21. Nair, R. U., & Jha, R. M. (2014). Electromagnetic design and performance analysis of airborne radomes: Trends and perspectives [Antenna Applications Corner]. IEEE Antennas and Propagation Magazine, IEEE, 56(4), 276–298.

    Article  Google Scholar 

  22. Lee, C. K., & Langley, R. J. (1985). Equivalent-circuit models for frequency selective surfaces at oblique angles of incidence. IEE Proceedings H on Microwaves Antennas and Propagation, 132(6), 395–399.

    Article  Google Scholar 

  23. Reed, J. A. (1997). Frequency selective surfaces with multiple periodic elements. Ph.D. thesis, The University of Texas, Dallas, 1997.

  24. Sung, G. H. H., Sowerby, K. W., & Williamson, A. G. (2005). Equivalent circuit modelling of a frequency selective plasterboard wall. In Proceedings of IEEE international symposium on antennas and propagation, Washington DC, USA, July 3–8 (pp. 400–403).

  25. Hosseinipanah, M., Wu, Q., Zhang, C., Minji, F. A., & Yang, G. Y. (2008). Design of square-loop frequency selective surfaces utilize C-band radar stations. In Proc. int. conf. on microwave and millimeter wave technology, 2008, Nanjing, China, April 21–24 (pp. 66–68).

  26. Sung, H. H. (2006). Frequency selective wallpaper for mitigating indoor wireless interference. Ph.D. thesis, Aukland University, NZ.

  27. Parker, E. A., & Hamdy, S. M. A. (1981). Rings as elements for frequency selective surfaces. IEE Electronics Letters, 17(17), 612–614.

    Article  Google Scholar 

  28. Huang, J., Wu, T. K., & Lee, S. W. (1994). Tri-band frequency selective surface with circular ring elements. IEEE Transactions on Antennas and Propagation, 42(2), 166–175.

    Article  Google Scholar 

  29. Izquierdo, B. S., & Parker, E. A. (2014). Dual polarized reconfigurable frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 62(2), 764–771.

    Article  Google Scholar 

  30. Yang, G., Zhang, T., Li, W., & Wu, Q. (2010). A novel stable miniaturized frequency selective surface. IEEE Antennas and Wireless Propagation Letters, 9, 1018–1021.

    Article  Google Scholar 

  31. Chiu, C. N., & Wang, W. (2013). A dual-frequency miniaturized-element FSS with closely located resonances. IEEE Antennas and Wireless Propagation Letters, 12, 163–165.

    Article  Google Scholar 

  32. Yan, M., Que, S., Wang, J., Zhang, J., Zhang, A., Xia, S., & Wang, W. (2014). A novel miniaturized frequency selective surface with stable resonance. IEEE Antennas and Wireless Propagation Letters, 13, 639–641.

    Article  Google Scholar 

  33. Guang-Ming, T., Jun-Gang, M., & Jin-Ming, D. (2012). A novel four-legged loaded element thick-screen frequency selective surface with a stable performance. Chinese Physics B, 21(12), 1–8.

    Google Scholar 

  34. Bharti, Garima, Jha, K. R., Singh, G., & Jyoti, R. (2015). Azimuthally periodic wedge-shaped metallic vane loaded circular ring frequency selective surface. International Journal of Microwave and Wireless Technologies, 7(1), 95–106.

    Article  Google Scholar 

  35. Dubrovka, R., Vazquez, J., Parini, C., & Moore, D. (2006). Equivalent circuit method for analysis and synthesis of frequency selective surfaces. IEE Proceedings Microwaves, Antennas and Propagation, 153(3), 213–220.

    Article  Google Scholar 

  36. Langley, R. J., & Parker, E. A. (1982). Equivalent circuit model for arrays of square loops. IEE Electronics Letters, 18(7), 294–296.

    Article  Google Scholar 

  37. Chang, K. (1996). Microwave ring circuits and antennas. New York: Wiley.

    Google Scholar 

  38. Bahl, I. (2003). Lumped elements for rf and microwave circuits (1st ed.). London: Artech House.

    Google Scholar 

  39. Planar EM Technical notes, CST Microwave Studio: Floquet Port help. http://www.slideshare.net/bundahamka/cst-training-core-module-antenna-2.

  40. Planar EM Technical notes, Getting started with HFSS: Floquet Port help. http://www.scribd.com/doc/27207025/Getting-Started-With-HFSS#scribd.

  41. Yang, Y., Wang, X. H., & Zhou, H. (2012). Dual-band frequency selective surface with miniaturized element in low frequencies. Progress in Electromagnetic Research Letter, 33, 167–175.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are sincerely thankful to the anonymous reviewer for critical comments and suggestions to improve the quality of the manuscript and also to the Indian Space Research Organization vide Project No. ISRO/RES/4/579/10-11 for the financial aid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharti, G., Jha, K.R., Singh, G. et al. Design of Azimuthally Periodic Wedge-Shaped Circular Ring Bandpass Frequency Selective Surface Using Transmission-Line Method. Wireless Pers Commun 85, 1411–1428 (2015). https://doi.org/10.1007/s11277-015-2848-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2848-6

Keywords

Navigation