Skip to main content
Log in

Channel Estimation Using Radial Basis Function Neural Network in OFDM–IDMA System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, channel estimation based on Radial Basis Function Neural Network (RBFNN) is proposed to estimate channel frequency responses in orthogonal frequency division multiplexing–interleave division multiple access (OFDM–IDMA) systems. Several channel estimation techniques including least squares (LS) and minimum mean square error (MMSE) known as conventional pilot based channel estimation algorithms and multilayered perceptron (MLP) with two different training algorithms like Levenberg–Marquardt (LM) and resilient backpropagation (RBP) are also utilized to be able to make comparisons with our proposed method with the help of bit error rate and mean square errror (MSE) graphs. It is demonstrated with computer simulations that the method in which RBFNN is used for channel estimation shows better performance than LS, multilayered perceptron–Resilient backpropagation (MLP–RBP) and multilayered perceptron–Levenberg–Marquardt (MLP–LM) without the requirement of channel statistics and noise information that are essential for MMSE algorithm to estimate the channel coefficients. Even though MMSE algorithm still shows the best performance, our proposed channel estimator has the advantage of being less complex and easy to apply which makes it a serious candidate for channel estimation in OFDM–IDMA system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cimini, L. J. (1985). Analysis and simulation of digital mobile channel using orthogonal frequency division multiplexing. IEEE Transactions on Communications, 33(7), 665–675.

    Article  Google Scholar 

  2. Marchetti, N., Rahman, I. M., Kumar, S., & Parasad, R. (2009). OFDM: Principles and challenges. In V. Tarokh (Ed.), New directions in wireless communications research (pp. 29–62). New york: Springer.

  3. Guan, Y., Xu, T., Leuken, V. R., & Qian, M. (2014). Parallel channel estimator and equalizer for mobile OFDM system. Wireless Personel Communications, 33(3), 839–861.

    Google Scholar 

  4. Subotic, V., & Primak, S. (2006). BER analysis of equalized OFDM systems in Nagakami, m < 1 fading. Wireless Personal Communications, 40(3), 281–290.

    Article  Google Scholar 

  5. Ping, L., & Liu, L. (2004). Analysis and design of IDMA systems based on SNR evolution and power allocation. In Vehicular Technology Conference (VTC’04-Fall) (pp. 1068–1072).

  6. Mahafeno, I., Langlais, C., & Jego, C. (2006). OFDM-IDMA versus IDMA with ISI cancellation for quasi-static Rayleigh fading multipath channels. In 4th International Symposium on Turbo Codes and Related Topics (pp. 3–7).

  7. Xiao, Y., He, X., Hu, S., & Li, S. (2012). Variable interleaver allocation for downlink OFDM–IDMA. Wireless Personal Communications, 67(2), 359–366.

    Article  Google Scholar 

  8. Wang, P., Xiao, J., & Ping, L. (2006). Comparison of orthogonal and nonorthogonal approaches to future wireless cellular systems. IEEE Vehicular Technology Magazine, 1(3), 4–11.

    Article  Google Scholar 

  9. Schoeneich, H., & Hoeher, P. A. (2004). Adaptive interleave division multiple access: A potential air interference for 4G bearer services and wireless LANs. In International Conference on Wireless and Optical Communications Networks (WOCN 2004) (pp. 179–182).

  10. Coleri, S., Ergen, M., Puri, A., & Bahai, A. (2002). Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Transactions on Broadcasting, 48(3), 223–229.

    Article  Google Scholar 

  11. de Beek, J.J.V., Edfors, O.S., Sandell, M., Wilson, S.K., & Börjesson, O.P. (1995). On channel estimation in OFDM systems. In 45th IEEE Vehicular Technology Conference (pp. 815–819).

  12. Hsieh, M. H., & Wei, C. H. (2005). Channel estimation for OFDM system based on comb-type pilot arrangement in frequency selective fading channels. IEEE Transactions on Consumer Electronics, 44(1), 217–225.

    Article  Google Scholar 

  13. Schoeneich, H., & Hoeher, P. A. (2006). Iterative pilot-layer aided channel estimation with emphasis on interleave division multiple access systems. EURASIP Journal on Applied Signal Processing,. doi:10.1155/ASP/2006/81729.

    Google Scholar 

  14. Xie, Y., & Georghiades, C. (2003). Two EM-type channel estimation algorithms for OFDM with transmitter diversity. IEEE Transactions on Communications, 51(1), 106–116.

    Article  Google Scholar 

  15. Münster, M., & Hanzo, L. (2005). Parallel-interference cancellation-assisted decision-directed channel estimation for OFDM systems using multiple transmit antennas. IEEE Transactions on Wireless Communications, 4(5), 2148–2162.

    Article  Google Scholar 

  16. Cheng, C.H., Cheng, Y.P., Huang, Y.H., & Li, W.C. (2013). Using back propagation neural network for channel estimation and compensation in OFDM systems. In 7th International Conference on Complex, Intelligent and Software Intensive Systems (CISIS) (pp. 340–345).

  17. Seyman, M. N., & Taspinar, N. (2013). Channel estimation based on neural network in space time block coded MIMO–OFDM system. Digital Signal Processing, 23(1), 275–280.

    Article  MathSciNet  Google Scholar 

  18. Seyman, M. N., & Taspinar, N. (2012). MIMO–OFDM channel estimation using ANFIS. Elektronika ir Electrotechnica, 120(4), 75–78.

    Google Scholar 

  19. Seyman, M. N., & Taspinar, N. (2013). Radial basis function neural networks for channel estimation in MIMO–OFDM systems. Arabian Journal for Science and Engineering, 38(8), 2173–2178.

    Article  Google Scholar 

  20. Seyman, M. N., & Taspinar, N. (2008). Channel estimation based on adaptive neuro- fuzzy inference system in OFDM. IEICE Transactions on Communications, 91(7), 2426–2430.

    Article  Google Scholar 

  21. Ping, L., Liu, L., Wu, K. Y., & Leung, W. K. (2006). Interleave-division multiple-access. IEEE Transactions on Wireless Communications, 5(4), 938–947.

    Article  Google Scholar 

  22. Ping, L., Guo, Q., & Tong, J. (2007). The OFDM–IDMA approach to wireless communication system. IEEE Wireless Communications, 14(3), 18–24.

    Article  Google Scholar 

  23. Hagan, M. T., Demuth, B., & Beale, M. (1996). Neural network design. Boston: PWS Publishing Company.

    Google Scholar 

  24. Karayiannis, N. B. (1999). Reformulated radial basis neural networks trained by gradient descent. IEEE Transactions on Neural Networks, 10(3), 657–671.

    Article  Google Scholar 

  25. Musavi, M. T., Ahmed, W., Chan, K. H., Faris, K. B., & Hummels, D. M. (1992). On the training of radial basis function classifiers. Neural Networks, 5(4), 595–603.

    Article  Google Scholar 

  26. Buhmann, G., & Martin, D. (2003). Radial basis functions: Theory and implementations. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Acknowledgments

This research was funded by a Grant (No. FYL-2013-4799) from Erciyes University Scientific Research Projects Coordination Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şakir Şimşir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şimşir, Ş., Taşpınar, N. Channel Estimation Using Radial Basis Function Neural Network in OFDM–IDMA System. Wireless Pers Commun 85, 1883–1893 (2015). https://doi.org/10.1007/s11277-015-2877-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2877-1

Keywords

Navigation