Skip to main content
Log in

Secure Cognitive Reactive Decode-and-Forward Relay Networks: With and Without Eavesdropper

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we study performances of cooperative relay networks in cognitive radio with reactive multiple decode-and-forward (DF) relays. In particular, we first derive exact and asymptotic expressions of outage probability for the considered scheme with K-th best relay selection over Rayleigh fading channel. Next, in the presence of an eavesdropper and the same relay selection scheme, secrecy performance of the cognitive relay network is also evaluated, in terms of average secrecy capacity. We then perform Monte-Carlo simulations to verify the theoretical derivations. Our results have presented the significance of using relay networks to enhance the system and secrecy performance of cognitive reactive DF relay networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ghasemi, A., & Sousa, E. S. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications, 6, 649–658.

    Article  Google Scholar 

  2. Duong, T. Q., Yeoh, P. L., Bao, Vo Nguyen Quoc, Elkashlan, M., & Yang, N. (2012). Cognitive relay networks with multiple primary transceivers under spectrum sharing. IEEE Signal Processing Letters, 19, 741–744.

    Article  Google Scholar 

  3. Duy, T. T., & Kong, H. Y. (2014). Adaptive cooperative decode-and-forward transmission with power allocation under interference constraint. Wireless Personal Communications, 74, 401–414.

    Article  Google Scholar 

  4. Bletsas, A., Shin, H., & Win, M. Z. (2007). Cooperative communications with outage-optimal opportunistic relaying. IEEE Transactions on Wireless Communications, 6, 3450–3460.

    Article  Google Scholar 

  5. Suraweera, H. A., Smith, P. J., & Shafi, M. (2010). Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Transactions on Vehicular Technology, 59, 1811–1822.

    Article  Google Scholar 

  6. Duong, T. Q., da Costa, D. B., Elkashlan, M., & Bao, V. N. Q. (2012). Cognitive amplify-and- forward relay networks over Nakagami-m fading. IEEE Transactions on Vehicular Technology, 61, 2368–2374.

    Article  Google Scholar 

  7. Kim, K. J., Duong, T. Q., & Tran, X.-N. (2012). Performance analysis of cognitive spectrum-sharing single-carrier systems with relay selection. IEEE Transactions on Signal Processing, 60, 6435–6449.

    Article  MathSciNet  Google Scholar 

  8. Duong, T. Q., Duy, T. T., Matthaiou, M., Tsiftsis, T., & Karagiannidis, G. K. (2013). Cognitive cooperative networks in dual-hop asymmetric fading channels. In Proceedings of IEEE Global Communications Conference (Globecom), Atlanta, GA, (pp. 977-983).

  9. Bao, V. N. Q., Duong, T. Q., da Costa, D. B., Alexandropoulos, G. C., & Nallanathan, A. (2013). Cognitive amplify-and-forward relaying with best relay selection in non-identical Rayleigh fading. IEEE Communications Letters, 17, 475–478.

    Article  Google Scholar 

  10. Sagong, S., Lee, J., & Hong, D. (2011). Capacity of reactive DF scheme in cognitive relay networks. IEEE Transactions on Wireless Communications, 10, 1276–1536.

    Article  Google Scholar 

  11. Duy, T. T., & Kong, H. Y. (2013). Performance analysis of incremental amplify-and-forward relaying protocols with nth best partial relay selection under interference constraint. Wireless Personal Communications, 71, 2741–2757.

    Article  Google Scholar 

  12. Zhang, X., Yan, Z., Gao, Y., & Wang, W. (2013). On the study of outage performance for cognitive relay networks (CRN) with the Nth best-relay selection in Rayleigh-fading channels. IEEE Transactions on Wireless Communications, 2, 110–113.

    Article  Google Scholar 

  13. Wyner, A. D. (1975). The wire-tap channel. Bell System Techical Journal, 54, 13551367.

    MATH  MathSciNet  Google Scholar 

  14. Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. W. (2008). Wireless information theoretic security. IEEE Transactions on Information Theory, 54, 2515–2534.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gopala, P. K., Lai, L., & Gamal, H. E. (2008). On the secrecy capacity of fading channels. IEEE Transactions on Information Theory, 54, 4687–4698.

    Article  MATH  MathSciNet  Google Scholar 

  16. Wang, L., Yang, N., Elkashlan, M., Yeoh, P. L., & Yuan, J. (2014). Physical layer security of maximal ratio combining in two-wave with diffuse power fading channels. IEEE Transactions on Information Forensics and Security, 9, 247–258.

    Article  Google Scholar 

  17. Elkashlan, M., Wang, L., Duong, T. Q., Karagiannidis, G. K., & Nallanathan, A. (2014). On the security of cognitive radio networks. IEEE Transactions on Vehicular Technology. doi:10.1109/TVT.2014.2358624.

  18. Yang, N., Yeoh, P. L., Elkashlan, M., Schober, R., & Collings, I. B. (2013). Transmit antenna selection for security enhancement in mimo wiretap channels. IEEE Transactions on Communications, 61, 144–154.

    Article  Google Scholar 

  19. Yang, N., Yeoh, P. L., Elkashlan, M., Schober, R., & Yuan, J. (2013). MIMO wiretap channels: Secure transmission using transmit antenna selection and receive generalized selection combining. IEEE Communications Letters, 17, 1754–1757.

    Article  Google Scholar 

  20. Wang, L., Elkashlan, M., Huang, J., Schober, R., & Mallik, R. K. (2014). Secure transmission with antenna selection in MIMO Nakagami-m channels. IEEE Transactions on Wireless Communications, 13, 6054–6067.

    Article  Google Scholar 

  21. Wang, L., Elkashlan, M., Huang, J., Tran, N. H., & Duong, T. Q. (2014). Secure transmission with optimal power allocation in untrusted relay networks. IEEE Wireless Communications Letters, 3, 289–292.

    Article  Google Scholar 

  22. Wang, L., Kim, K. J., Duong, T. Q., Elkashlan, M., & Poor, H. V. (2015). Security enhancement of cooperative single carrier systems. IEEE Transactions on Information Forensics and Security, 10, 90–103.

    Article  Google Scholar 

  23. Liu, Y., Wang, L., Duy, T. T., Elkashlan, M., & Duong, T. Q. (2015). Relay selection for security enhancement in cognitive relay networks. IEEE Wireless Communications Letters, 4, 46–49.

    Article  Google Scholar 

  24. Duy, T. T., & Kong, H. Y. (2013). Performance analysis of two-way hybrid decode-and-amplify relaying scheme with relay selection for secondary spectrum access. Wireless Personal Communications, 69, 857–878.

    Article  Google Scholar 

  25. Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10, 390395.

    Google Scholar 

  26. Gradshteyn, I., & Ryzhik, I. (2007). Table of integrals, series, and products (7th ed.). New York, London: Academic Press Inc.

    MATH  Google Scholar 

  27. Duong, T. Q., Duy, T. T., Elkashlan, M., Tran, Nghi. H., & Dobre, Octavia A. (2014). Secured cooperative cognitive radio networks with relay selection. In Proceedings of IEEE Globecom2014, Austin, TX USA, (pp. 3151-3156).

  28. Bao, V. N. Q., & Duy, T. T. (2012). Performance analysis of cognitive underlay DF relay protocol with Kth best partial relay selection. In Proceedings of ATC2012, Ha Noi, VietNam, (pp. 130-135).

  29. Duy, T. T., Duong, T. Q., da Costa, D. B., Bao, V. N. Q., & Elkashlan, M. (2015). Proactive relay selection with joint impact of hardware impairment and co-channel interference. IEEE Transactions on Communications, 63, 1594–1606.

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 102.04-2013.13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Trung Duy.

Additional information

This paper has been presented in part as the best paper in Signal Processing and Communications Symposium at the IEEE CHINACOM, Maoming, China, August 2014.

Appendix: A Detailed Derivation of (31)

Appendix: A Detailed Derivation of (31)

Using Eqs. (25), (26), and (30), the corresponding asymptotic outage probability of (17) is given by

$$\begin{aligned} \tilde{P}_1^\mathrm{out}&\mathop \approx \limits ^{\rho _p \rightarrow 0} \mathop {\mathop {\sum }\limits _{{Q_1},{Q_2}}}\limits _{{N < K}} \prod \limits _{t = K}^M {{\lambda _{s{j_t}}}} (\rho _P)^{M-K+1} \nonumber \\&\qquad \times \left( 1 - \exp (- \lambda _{sp}\mu )+ \frac{{\varGamma ( {M - K + 2,{\lambda _{sp}}\mu })}}{{{{( {{\lambda _{sp}}\mu })}^{M - K + 1}}}} \right) . \end{aligned}$$
(56)

Using again Eqs. (56) and (30) for (19), we get (57) as

$$\begin{aligned} \tilde{P}_2^\mathrm{out}&\mathop \approx \limits ^{\rho _p \rightarrow 0} \mathop {\mathop {\sum }\limits _{{Q_1},{Q_2}}}\limits _{{N \ge K}} \prod \limits _{t = N + 1}^M {{\lambda _{s{j_t}}}} \left( 1 - \exp \left( { - {\lambda _{sp}}\mu } \right) +\frac{{\varGamma \left( {M - N + 1,{\lambda _{sp}}\mu } \right) }}{{{{\left( {{\lambda _{sp}}\mu } \right) }^{M - N}}}} \right) \nonumber \\&\qquad \times \mathop {\mathop {\sum }\limits _{\scriptstyle c = 1}}\limits _{\scriptstyle {j_t} = b} ^N {\frac{1}{{N - K + 1}}\left( {{\lambda _{bd}} + \frac{{{\lambda _{bd}}\exp \left( { - {\lambda _{bp}}\mu } \right) }}{{{\lambda _{bp}}\mu }}} \right) } \nonumber \\&\qquad \times \sum \limits _{{W_1},{W_2}}^{} \prod \limits _{v = K + 1}^N \left( {{\lambda _{{z_v}d}} + \frac{{{\lambda _{{z_v}d}}\exp ( { - {\lambda _{{z_v}p}}\mu })}}{{{\lambda _{{z_v}p}}\mu }}} \right) \rho _P^{M - K + 1}. \end{aligned}$$
(57)

Thus, combining (56) and (57), we can obtain \(\tilde{P}_\mathrm{out}\). Similarly, an asymptotic expression for \(\tilde{P}_\mathrm{H,out}\) in the homogeneous networks can be readily computed as \(\tilde{P}_\mathrm{H,out}\) in (31).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, DB., Vu, T.T., Duy, T.T. et al. Secure Cognitive Reactive Decode-and-Forward Relay Networks: With and Without Eavesdropper. Wireless Pers Commun 85, 2619–2641 (2015). https://doi.org/10.1007/s11277-015-2924-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2924-y

Keywords

Navigation