Skip to main content
Log in

Multi-function Current Differencing Cascaded Transconductance Amplifier (MCDCTA) and Its Application to Current-Mode Multiphase Sinusoidal Oscillator

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this study, a new versatile active element, namely multifunction current differencing cascaded transconductance amplifier (MCDCTA) is proposed. The proposed MCDCTA enjoys the advantages of low voltage, low-input and high-output impedance, wide bandwidth etc., and it simplifies the design of the current-mode analog signal processing circuit greatly, especially the design of high-order filter and oscillator circuits. Moreover, an example, a new current-mode multiphase sinusoidal oscillator (MSO) using the proposed MCDCTA is described in this paper. The proposed MSO consists only one MCDCTA and minimum grounded passive elements, it could provide 2n (n ≧ 2) output current signals with equally phase difference, and the output current signals are all at high output impedance terminals. The oscillation condition and the oscillation frequency of the MSO could be linearly and electronically adjusted by controlling the bias currents of MCDCTA, and it is suitable for variable frequency oscillator application. The operation of the proposed oscillator has been verified through PSPICE simulation and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Geiger, R. L., & Sinencio, E. (1985). Active filter design using operational transconductance amplifiers. A tutorial. IEEE Circuits and Devices Magazine, 1, 20–32.

    Article  Google Scholar 

  2. Khan, I. A., Ahmed, M. T., & Minhaj, N. (1992). Tunable OTA-based multiphase sinusoidal oscillators. International Journal of Electronics, 72, 443–450.

    Article  Google Scholar 

  3. Souliotis, George, & Psychalinos, Costas. (2009). Electronically controlled multiphase sinusoidal oscillators using current amplifiers. International Journal of Circuit Theory and Applications, 37(1), 43–52.

    Article  Google Scholar 

  4. Wu, D. S., Liu, S. I., Hwang, Y. S., & Wu, Y. P. (1995). Multiphase sinusoidal oscillator using the CFOA. IEE Proceedings-Circuits, Devices and Systems, 142, 37–40.

    Article  Google Scholar 

  5. Sedra, A., & Smith, K. C. (1970). A second generation current conveyor and its application. IEEE Transactions on Circuit Theory, 17(1), 132–134.

    Article  Google Scholar 

  6. Hou, C. L., & Shen, B. (1995). Second-generation current conveyor-based multiphase sinusoidal oscillator. International Journal of Electronics, 78, 317–325.

    Article  Google Scholar 

  7. Abuelma’atti, M. T., & Al-Qahtani, M. A. (1998). Low-component second-generation current conveyor-based multiphase sinusoidal oscillator. International Journal of Electronics, 84, 45–52.

    Article  Google Scholar 

  8. Wu, D. S., Liu, S. I., Hwang, Y. S., & Wu, Y. P. (1995). Multiphase sinusoidal oscillator using second-generation current conveyors. International Journal of Electronics, 78, 645–651.

    Article  Google Scholar 

  9. Skotis, G. D., & Psychalinos, C. (2010). Multiphase sinusoidal oscillators using second generation current conveyors. AEU-International Journal of Electronics and Communications, 64(12), 1178–1182.

    Article  Google Scholar 

  10. Acar, C., & Toguz, S. (1999). A versatile building block: Current differencing buffered amplifier suitable for analog signal processing filters. Microelectron, 30, 157–160.

    Article  Google Scholar 

  11. Klahan, K., Tangsrirat, W., & Surakampontorn W. (2004) Realization of multiphase sinusoidal oscillator using CDBAs. In Proceedings of the IEEE Asia-Pacific conference on circuits and systems, Vol. 56, pp. 725–728.

  12. Biolek D. (2003) CDTA-building block for current-mode analog signal processing. In Proceedings of the ECCTD’03, Krakow, Poland, Vol. III, pp. 397–400.

  13. Keskin, A. U., & Biolek, D. (2006). Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proceedings-Circuits, Devices and Systems, 153, 214–218.

    Article  Google Scholar 

  14. Shah, N. A., Quadri, M., & Iqbal, S. Z. (2007). CDTA based universal transadmittance filter. Analog Integrated Circuits and Signal Processing, 52, 65–69.

    Article  Google Scholar 

  15. Jaikla, W., Siripruchyanun, M., Bajer, J., & Biolek, D. (2008). A simple current-mode quadrature oscillator using single CDTA. Radioengineering, 17, 33–40.

    Google Scholar 

  16. Tangsrirat, W., & Tanjaroena, W. (2008). Current-mode multiphase sinusoidal oscillator using current differencing transconductance amplifiers. Circuits, Systems & Signal Processing, 21, 81–93.

    Article  Google Scholar 

  17. Lahiri, A. (2009). New current-mode quadrature oscillators using CDTA. IEICE Electronics Express, 6, 135–140.

    Article  Google Scholar 

  18. Lahiri, A., & Chowdhury, A. (2009). A novel first-oder current-mode all-pass filter using CDTA. Radioengineering, 18(3), 300–306.

    Google Scholar 

  19. Horng, J. W. (2009). Current-mode third-order quadrature oscillator using CDTAs. Active and Passive Electronic Components, Article ID 789171.

  20. Tangsrirat, W., Tanjaroena, W., & Pukkalanun, T. (2009). Current-mode multiphase sinusoidal oscillator using CDTA-based all-pass sections. AEU-International Journal of Electronics and Communications, 63, 616–622.

    Article  Google Scholar 

  21. Tangsrirat, W., Pukkalanun, T., & Surakampontorn, W. (2010). Resistorless realization of current-mode first-order all-pass filter using current differencing transconductance amplifiers. Microelectronics Journal, 41, 178–183.

    Article  Google Scholar 

  22. Jaikla, W., Siripruchyanan, M., Biolek, D., & Biolkova, V. (2010). High-output-impedance current-mode multiphase sinusoidal oscillator employing current differencing transconductance amplifier-base all-pass filters. International Journal of Electronics, 97, 811–826.

    Article  Google Scholar 

  23. Tangsrirat, W., & Pukkalanun, T. (2011). Structural generation of two integrator loop filters using CDTAs and grounded capacitors. International Journal of Circuit Theory and Applications, 39, 31–45.

    Article  MATH  Google Scholar 

  24. Kacar, F., & Kuntman, H. H. (2011). A new, improved CMOS realization of CDTA and its filter applications. Turkish Journal of Electrical Engineering and Computer Sciences, 19, 631–642.

    Google Scholar 

  25. Khateb, F., & Biolek, D. (2011). Bulk-driven current differencing transconductance amplifier. Circuits, Systems, and Signal Processing, 30, 1071–1089.

    Article  Google Scholar 

  26. Prasad, D., Bhaskar, D. R., & Singh, A. K. (2011). Electronically controllable grounded capacitor current-mode quadrature oscillator using single MOCCCDTA. Radioengineering, 20, 354–359.

    Google Scholar 

  27. Li, Y. A. (2011). A Modified CDTA (MCDTA) and its applications: Designing current-mode sixth-order elliptic band-pass filter. Circuits, Systems, and Signal Processing, 30(6), 1383–1390.

    Article  Google Scholar 

  28. Kumngern, M., Lamun, P., & Dejhan, K. (2012). Current-mode quadrature oscillator using current differencing transconductance amplifiers. International Journal of Electronics, 99, 971–986.

    Article  Google Scholar 

  29. Jin, J., & Wang, C. H. (2012). Single CDTA-based current-mode quadrature oscillator. International Journal of Electronics and Communications (AEÜ), 66, 933–936.

    Article  Google Scholar 

  30. Chien, H. C., & Wang, J. M. (2013). Dual-mode resistorless sinusoidal oscillator using single CCCDTA. Microelectronics Journal, 44(3), 216–224.

    Article  Google Scholar 

  31. Jaikla, W., Khateb, F., Siripongdee, S., Supavarasuwat, P., & Suwanjan, P. (2013). Electronically tunable current-mode biquad filter employing CCCDTAs and grounded capacitors with low input and high output impedance. AEU-International Journal of Electronics and Communications, 67(12), 1005–1009.

  32. Xu, J., Wang, C., & Jin, J. (2013). Current differencing cascaded transconductance amplifier (CDCTA) and its applications on current-mode nth-order filters. Circuits, Systems & Signal Processing, 32(3), 2047–2063.

  33. Bhushan, M., & Newcomb, R. W. (1967). Grounding of capacitors in integrated circuits. Electronics Letters, 3(4), 148–149.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Prof. Ramjee Prasad and the anonymous 274 reviewers for providing valuable comments which helped in improving this manuscript. This work is supported by the National Natural Science Foundation of China (No. 61363073), National Natural Science Foundation of China (No. 61363033) and the Education Department of Hunan Province outstanding youth project (No. 13B093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J. Multi-function Current Differencing Cascaded Transconductance Amplifier (MCDCTA) and Its Application to Current-Mode Multiphase Sinusoidal Oscillator. Wireless Pers Commun 86, 367–383 (2016). https://doi.org/10.1007/s11277-015-2934-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2934-9

Keywords

Navigation