Skip to main content
Log in

Spectral Domain Analysis of Resonant Characteristics of High Tc Superconducting Rectangular Microstrip Patch Printed on Isotropic or Uniaxial Anisotropic Substrates

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, radiation characteristics of the perfectly superconducting, or an imperfectly conducting rectangular microstrip, which is printed on isotropic or uniaxial anisotropic substrate are investigated using a Fourier transforms domain in conjunction with the stationary phase method. The effects of uniaxial anisotropy on the resonant frequency, half-power bandwidth, and radiation patterns are investigated as the function of anisotropy ratio values of substrate materials. It is found that the resonant frequency and the half-power bandwidth are affected significantly by the superconductivity property of the patch. Further results show that a thin superconductor patch has a significant effect on the radiation pattern. Results are compared with previously published data and are found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barkat, O., & Benghalia, A. (2010). Synthesis of superconducting circular antennas placed on circular array using a particle swarm optimisation and the full-wave method. Progress in Electromagnetics Research B, 22, 103–119.

    Article  Google Scholar 

  2. Khan, T., De, A., & Uddin, M. (2013). Prediction of Slot-Size and Inserted Air-Gap for Improving the Performance of Rectangular Microstrip Antennas Using Artificial Neural Networks. IEEE Antennas and Wireless Propagation Letters, 12, 1367–1371.

    Article  Google Scholar 

  3. Bose, T., & Gupta, N. (2012). Design of an aperture-coupled microstrip antenna using a hybrid neural network. Microwaves, Antennas and Propagation, IET, 6(4), 470–474.

    Article  Google Scholar 

  4. Gürel, C. S., & Yazgan, E. (2010). Analysis of annular ring microstrip patch on uniaxial medium via Henkel transform domain immittance approach. Progress in Electromagnetics Research M, 11, 37–52.

    Article  Google Scholar 

  5. Benkouda, S., Messai, A., Amir, M., Bedra, S., & Fortaki, T. (2014). Characteristics of a high T c superconducting rectangular microstrip patch on uniaxially anisotropic substrate. Physica C: Superconductivity, 502, 70–75.

    Article  Google Scholar 

  6. Boufrioua, A., & Benghalia, A. (2006). Effects of the resistive patch and the uniaxial anisotropic substrate on the resonant frequency and the scattering radar cross section of a rectangular microstrip antenna. Aerospace Science and Technology, 10(3), 217–221.

    Article  Google Scholar 

  7. Liu, X., Shi, X., Ke, J., & Wang, H. (2014). Radiation properties of microstrip patch antenna covered with an anisotropic dielectric layer and a plasma sheath. Optik - International Journal for Light and Electron Optics, 125(6), 1770–1774.

    Article  Google Scholar 

  8. Mandal, K., & Sarkar, P. P. (2013). A compact high gain microstrip antenna for wireless applications. AEU - International Journal of Electronics and Communications, 67(12), 1010–1014.

    Article  MathSciNet  Google Scholar 

  9. Koziel, S., Ogurtsov, S., Zieniutycz, W., & Sorokosz, L. (2014). Expedited design of microstrip antenna subarrays using surrogate-based optimization. IEEE Antennas and Wireless Propagation Letters, 13, 635–638.

    Article  Google Scholar 

  10. Aneesh, M., Ansari, J. A., Singh, A., & Sayeed, S. S. (2014). Analysis of microstrip line feed slot loaded patch antenna using artificial neural network. Progress in Electromagnetics Research B, 58, 35–46.

    Article  Google Scholar 

  11. Chebbara, F., Benkouda, S., & Fortaki, T. (2010). Fourier transform domain analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture. Journal of Infrared, Millimeter, and Terahertz Waves, 31(7), 821–832.

    Article  Google Scholar 

  12. Messai, A., Benkouda, S., Amir, M., Bedra, S., and Fortaki, T.: ‘Analysis of High Superconducting Rectangular Microstrip Patches over Ground Planes with Rectangular Apertures in Substrates Containing Anisotropic Materials’, International Journal of Antennas and Propagation, 2013.

  13. Khedrouche, D., & Benghalia, A. (2013). Modeling the superconducting effects on resonance and radiation characteristics of a cylindrical-rectangular microstrip antenna covered with a dielectric layer. Journal of Computational Electronics, 12(2), 297–305.

    Article  Google Scholar 

  14. Benmeddour, F., Dumond, C., Benabdelaziz, F., & Bouttout, F. (2010). Improving the performances of a high TC superconducting circular microstrip antenna with multilayered configuration and anisotropic dielectrics. Progress in Electromagnetics Research, 18, 169–183.

    Article  Google Scholar 

  15. Bedra, S., Bedra, R., Benkouda, S., & Fortaki, T. (2014). Full-wave analysis of anisotropic circular microstrip antenna with air gap layer. Progress in Electromagnetics Research M, 34, 143–151.

    Article  Google Scholar 

  16. Fortaki, T., Djouane, L., Chebara, F., & Benghalia, A. (2008). Radiation of a rectangular microstrip patch antenna covered with a dielectric layer. International Journal of Electronics, 95(9), 989–998.

    Article  Google Scholar 

  17. Fortaki, T., Khedrouche, D., Bouttout, F., & Benghalia, A. (2004). A numerically efficient full-wave analysis of a tunable rectangular microstrip patch. International Journal of Electronics, 91(1), 57–70.

    Article  MATH  Google Scholar 

  18. Aouabdia, N., Belhadj-Tahar, N.-E., Alquie, G., & Benabdelaziz, F. (2011). Theoretical and experimental evaluation of superstrate effect on rectangular patch resonator parameters. Progress in Electromagnetics Research B, 32, 129–147.

    Article  Google Scholar 

  19. HFSS: High Frequency Structure Simulator, Ansoft Corp, (2011).

  20. Pozar, D. M. (1987). Radiation and scattering from a microstrip patch on a uniaxial substrate. IEEE Transactions Antennas and Propagation, 35(6), 613–621.

    Article  Google Scholar 

  21. Richard, M. A., Bhasin, K. B., & Claspy, P. C. (1993). Superconducting microstrip antennas: an experimental comparison of two feeding methods. IEEE Transactions on Antennas and Propagation, 41(7), 967–974.

    Article  Google Scholar 

  22. Da Silva, S.G., d’Assuncao, A.G., & Oliveira, J.D.R.S. (1999). Analysis of high Tc superconducting microstrip antennas and arrays, Microwave and Optoelectronics Conference, SBMO/IEEE MTT-S, Rio de Janeiro, pp. 243–246.

  23. Fortaki, T., & Benghalia, A. (2004). Efficient analysis of the far field pattern of rectangular microstrip patch using the stationary phase method, The 16th international conference on microelectronics, ICM 2004 Proceedings, pp. 278–281.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Bedra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedra, S., Fortaki, T., Messai, A. et al. Spectral Domain Analysis of Resonant Characteristics of High Tc Superconducting Rectangular Microstrip Patch Printed on Isotropic or Uniaxial Anisotropic Substrates. Wireless Pers Commun 86, 495–511 (2016). https://doi.org/10.1007/s11277-015-2941-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2941-x

Keywords

Navigation