Skip to main content
Log in

Space-Polarization Shift Keying Modulation for MIMO Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose space-polarization shift keying (SPSK) modulation scheme for multiple-input multiple-output (MIMO) systems employing dual-polarized antenna array, where the concept of space shift keying (SSK) is extended to include both the space and polarization dimensions. In the SPSK, polarization index also been used to relay the information along with the antenna index. As a result, the proposed transmission scheme reduces the signal processing complexity at the receiver exponentially when compared to the SSK scheme, for a given target transmission rate. In this correspondence, we investigate the performance of \( 4\times 4 \) SPSK–MIMO configurations over different wireless channel scenarios for a range of values of the correlation coefficient and the Rician K-factor. We also highlight the effect of random orientation of antennas at the mobile unit on the bit error rate performance of SSK and SPSK transmission scheme. By using analytical results and simulations, we show that the proposed scheme outperforms the SSK scheme under line-of-sight channel conditions and its performance is comparable to SSK under non-line-of-sight channel conditions, for various receive-antenna inclination angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I. A., et al. (1972). Handbook of mathematical functions (Vol. 1). New York: Dover.

    MATH  Google Scholar 

  2. Alamouti, S. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.

    Article  Google Scholar 

  3. Baum, D.S., Gore, D., Nabar, R., Panchanathan, S., Hari, K., Erceg, V., et al. (2000) Measurement and characterization of broadband mimo fixed wireless channels at 2.5 ghz. In IEEE international conference on personal wireless communications, 2000 (pp. 203–206). IEEE.

  4. Bolcskei, H., Nabar, R.U., Erceg, V., Gesbert, D., & Paulraj, A.J. (2001) Performance of spatial multiplexing in the presence of polarization diversity. In IEEE international conference on acoustics, speech, and signal processing, 2001. Proceedings (ICASSP’01). 2001, (vol. 4, pp. 2437–2440). IEEE.

  5. Chau, Y.A. (2001) Space modulation on wireless fading channels. In Vehicular technology conference, 2001. VTC 2001 Fall. IEEE VTS 54th.

  6. Di Renzo, M., & Haas, H. (2010). A general framework for performance analysis of space shift keying (ssk) modulation for miso correlated nakagami-m fading channels. IEEE Transactions on Communications, 58(9), 2590–2603.

    Article  Google Scholar 

  7. Di Renzo, M., & Haas, H. (2011). Space shift keying (ssk) mimo over correlated rician fading channels: Performance analysis and a new method for transmit-diversity. IEEE Transactions on Communications, 59(1), 116–129.

    Article  Google Scholar 

  8. Gradshteyn, I., & Ryzhik, I. (2009) Tables of integrals, series, and products, academic, san diego, 2007. Received July 2, 2009.

  9. Jeganathan, J., Ghrayeb, A., & Szczecinski, L. (2008) Generalized space shift keying modulation for mimo channels. In IEEE 19th International Symposium on Personal, indoor and mobile radio communications, 2008. PIMRC 2008, (pp. 1–5). IEEE.

  10. Jeganathan, J., Ghrayeb, A., & Szczecinski, L. (2008). Spatial modulation: Optimal detection and performance analysis. IEEE Communications Letters, 12(8), 545–547.

    Article  Google Scholar 

  11. Jeganathan, J., Ghrayeb, A., Szczecinski, L., & Ceron, A. (2009). Space shift keying modulation for mimo channels. IEEE Transactions on Wireless Communications, 8(7), 3692–3703.

    Article  Google Scholar 

  12. Kotz, S., & Adams, J.W. (1964) Distribution of sum of identically distributed exponentially correlated gamma-variables. The Annals of Mathematical Statistics, 35, 227–283.

    MathSciNet  MATH  Google Scholar 

  13. Kozono, S., Tsuruhara, T., & Sakamoto, M. (1984). Base station polarization diversity reception for mobile radio. IEEE Transactions on Vehicular Technology, 33(4), 301–306.

    Article  Google Scholar 

  14. Lemieux, J. F., El-Tanany, M. S., & Hafez, H. (1991). Experimental evaluation of space/frequency/polarization diversity in the indoor wireless channel. IEEE Transactions on Vehicular Technology, 40(3), 569–574.

    Article  Google Scholar 

  15. Lempiainen, J. J., & Laiho-Steffens, J. K. (1998). The performance of polarization diversity schemes at a base station in small/micro cells at 1800 mhz. IEEE Transactions on Vehicular Technology, 47(3), 1087–1092.

    Article  Google Scholar 

  16. Loredo, S., & Torres, R. P. (2001). An experimental analysis of the advantages of polarization diversity in indoor scenarios at 1.8 and 2.5 ghz. Microwave and optical technology letters, 31(5), 355–361.

    Article  Google Scholar 

  17. Mesleh, R., Haas, H., Ahn, C.W., & Yun, S. (2006) Spatial modulation-a new low complexity spectral efficiency enhancing technique. In First international conference on communications and networking in China, 2006. ChinaCom’06, (pp. 1–5). IEEE.

  18. Mesleh, R. Y., Haas, H., Sinanovic, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.

    Article  Google Scholar 

  19. Nabar, R. U., Bolcskei, H., Erceg, V., Gesbert, D., & Paulraj, A. J. (2002). Performance of multiantenna signaling techniques in the presence of polarization diversity. IEEE Transactions on Signal Processing, 50(10), 2553–2562.

    Article  Google Scholar 

  20. Oestges, C., Clerckx, B., Guillaud, M., & Debbah, M. (2008). Dual-polarized wireless communications: From propagation models to system performance evaluation. IEEE Transactions on Wireless Communications, 7(10), 4019–4031.

    Article  Google Scholar 

  21. Proakis, J. G. (1995). Digital communications. New York: McGraw-Hill.

    MATH  Google Scholar 

  22. Sellathurai, M., Guinand, P., & Lodge, J. (2006). Space-time coding in mobile satellite communications using dual-polarized channels. IEEE Transactions on Vehicular Technology, 55(1), 188–199.

    Article  Google Scholar 

  23. Simon, M. K., & Alouini, M. S. (1998). A unified approach to the performance analysis of digital communication over generalized fading channels. Proceedings of the IEEE, 86(9), 1860–1877.

    Article  Google Scholar 

  24. Sugiura, S., Xu, C., Ng, S. X., & Hanzo, L. (2011). Reduced-complexity coherent versus non-coherent qam-aided space-time shift keying. IEEE Transactions on Communications, 59(11), 3090–3101.

    Article  Google Scholar 

  25. Sugiura, S., Xu, C., Ng, S. X., & Hanzo, L. (2012). Reduced-complexity iterative-detection-aided generalized space-time shift keying. IEEE Transactions on Vehicular Technology, 61(8), 3656–3664.

    Article  Google Scholar 

  26. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.

    Article  MathSciNet  MATH  Google Scholar 

  27. Turkmani, A., Arowojolu, A., Jefford, P., & Kellett, C. (1995). An experimental evaluation of the performance of two-branch space and polarization diversity schemes at 1800 mhz. IEEE Transactions on Vehicular Technology, 44(2), 318–326.

    Article  Google Scholar 

  28. Vaughan, R. G. (1990). Polarization diversity in mobile communications. IEEE Transactions on Vehicular Technology, 39(3), 177–186.

    Article  Google Scholar 

  29. Wang, J., Jia, S., & Song, J. (2012). Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme. IEEE Transactions on Wireless Communications, 11(4), 1605–1615.

    Article  Google Scholar 

  30. Wolniansky, P.W., Foschini, G.J., Golden, G., & Valenzuela, R. (1998) V-blast: An architecture for realizing very high data rates over the rich-scattering wireless channel. In URSI international symposium on signals, systems, and electronics, 1998. ISSSE 98. 1998, (pp. 295–300). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthilkumar Dhanasekaran.

Appendix

Appendix

1.1 Proof of (42)

$$\begin{aligned} {\mathcal {I}}= \int _{0}^{\infty }\frac{Q\left( \sqrt{\bar{\gamma }\nu }\right) \nu ^{\zeta _{N_r}-1}exp\left( -\frac{N_{r}m\nu }{x\bar{\gamma }}\right) }{\left( \frac{x\bar{\gamma }}{N_{r}m}\right) ^{\zeta _{N_r}}\varGamma \left( \zeta _{N_r}\right) }\,d\nu \end{aligned}$$
(46)

where \(\varGamma (\cdot )\) represents the Gamma function. By using [1, Eq.6.5.17], the integral \({\mathcal {I}}\) can be written as follows:

$$\begin{aligned} {\mathcal {I}}=\frac{1}{2\sqrt{\pi }} \int _{0}^{\infty }\frac{\varGamma \left( \frac{1}{2},\frac{\nu \bar{\gamma }}{2}\right) \nu ^{\zeta _{N_r}-1}exp\left( -\frac{N_{r}m\nu }{x\bar{\gamma }}\right) }{\left( \frac{x\bar{\gamma }}{N_{r}m}\right) ^{\zeta _{N_r}}\varGamma \left( \zeta _{N_r}\right) }\,d\nu \end{aligned}$$
(47)

where \(\varGamma (\cdot ,\cdot )\) denotes incomplete Gamma function.

From [8, Eq.(6.455)], the integral in (47) can be simplified as

$$\begin{aligned} {\mathcal {I}}&=\frac{\varGamma\,\left( \zeta _{N_r}+\frac{1}{2}\right) }{2\sqrt{2\pi }\varGamma \left( \zeta _{N_r}\right) \left( \frac{x\bar{\gamma }}{N_{r}m}\right) ^{\zeta _{N_r}}\zeta _{N_r}\left( \frac{1}{2}+\frac{N_{r}m}{x\bar{\gamma }}\right) ^{\zeta _{N_r}+\frac{1}{2}}}\nonumber \\&\quad {}_2F_1\left( 1,\zeta _{N_r}+\frac{1}{2};\zeta _{N_r}+1;\frac{2N_{r}m}{x\bar{\gamma }+2N_{r}m}\right) \end{aligned}$$
(48)

where \(_2F_1(\cdot ,\cdot ;\cdot ;\cdot )\) is the Gaussian hypergeometric function [1, Eq.15.1.1].

After some algebraic manipulations, the integral \({\mathcal {I}}\) can be written as shown in below:

$$\begin{aligned} {\mathcal {I}}&=\frac{\varGamma (2\zeta _{N_r})}{\varGamma (\zeta _{N_r}) \varGamma (\zeta _{N_r}+1)}\left( \frac{N_{r}m}{2(x\bar{\gamma }+2N_rm)}\right) ^{\zeta _{N_r}}\left( \frac{x\bar{\gamma }}{x\bar{\gamma }+2N_rm}\right) ^{1/2}\nonumber \\&\quad {} _2F_1\left( 1,\zeta _{N_r}+\frac{1}{2};\zeta _{N_r}+1;\frac{2N_{r}m}{x\bar{\gamma }+2N_{r}m}\right) \end{aligned}$$
(49)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanasekaran, S. Space-Polarization Shift Keying Modulation for MIMO Channels. Wireless Pers Commun 86, 1509–1539 (2016). https://doi.org/10.1007/s11277-015-3004-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-3004-z

Keywords

Navigation