Skip to main content
Log in

Unified Performance Analysis of Multi-antenna Techniques in Dual Hop Networks over Nakagami-m Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, various multi-antenna dual hop relay networks are studied over flat Nakagami-m fading channels. The studied scenarios include transmit diversity techniques such as orthogonal space-time block coding, maximal-ratio transmission, and transmit antenna selection techniques and receive diversity techniques such as selection combining and maximal-ratio combining, and hybrid versions of these transmit and receive diversity techniques. In order to study and analyze the performance of the multi-antenna relay networks, closed-form and exact expressions for the moment generating function, the signal-to-noise ratio moments, the outage probability, and the symbol error probability are derived. Besides, to provide further insight about the performance of the studied scenarios asymptotic expressions revealing the array and diversity gain are also derived. Theoretical results are approved by the Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sendonaris, A., Erkip, E., & Aazhang, B. (1998). Increasing uplink capacity via user cooperation diversity. In IEEE International sympoisum on information theory, ISIT’1998, p. 156, IEEE.

  2. Laneman, J. N., & Wornell, G. W. (2000) Energy-efficient antenna sharing and relaying for wireless networks. In IEEE wireless communication and networking conference, WCNC’2000, (vol. 1, pp. 7–12), IEEE.

  3. Simon, M. K., & Alouini, M.-S. (2004). Digital communication over fading channels (2nd ed.). New Jersey: Wiley.

    Book  Google Scholar 

  4. Telatar, I. E. (1999). Capacity of multi-antenna gaussian channels. European Transactions on Telecommunications, 10(6), 585–595.

    Article  Google Scholar 

  5. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(3), 311–335.

    Article  Google Scholar 

  6. Wang, B., Zhang, J., & Host-Madsen, A. (2005). On the capacity of MIMO relay channels. IEEE Transaction on Information Theory, 51(1), 29–43.

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan, Y., & Thompson, J. (2007). MIMO configurations for relay channels: Theory and practice. IEEE Transactions on Wireless Communication, 6(5), 1774–1786.

    Article  Google Scholar 

  8. Laneman, J. N., Tse, D. N., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transaction on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  9. Hasna, M. O., & Alouini, M.-S. (2004). A performance study of dual-hop transmissions with fixed gain relays. IEEE Transaction on Wireless Communication, 3(6), 1963–1968.

    Article  Google Scholar 

  10. Hasna, M. O., & Alouini, M.-S. (2003). End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Transaction on Wireless Communication, 2(6), 1126–1131.

    Article  Google Scholar 

  11. Lo, T. K. Y. (1999). Maximum ratio transmission. IEEE Transaction on Communication, 47(10), 1458–1461.

    Article  Google Scholar 

  12. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.

    Article  Google Scholar 

  13. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.

    Article  MathSciNet  MATH  Google Scholar 

  14. Molisch, A. F. (2003). MIMO systems with antenna selection—An overview. IEEE Microwave Magazine, 5, 46–56.

    Article  Google Scholar 

  15. Sanayei, S., & Nosratinia, A. (2004). Antenna selection in MIMO systems. IEEE Communications Magazine, 42(10), 68–73.

    Article  MATH  Google Scholar 

  16. Thoen, S., Van der Perre, L., Gyselinckx, B., & Engels, M. (2001). Performance analysis of combined transmit-SC/receive-MRC. IEEE Transactions on Communication, 49(1), 5–8.

    Article  MATH  Google Scholar 

  17. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.

    Article  MathSciNet  MATH  Google Scholar 

  18. Coskun, A. F., & Kucur, O. (2011). Performance analysis of joint single transmit and receive antenna selection in Nakagami-m fading channels. IEEE Communications Letters, 15(2), 211–213.

    Article  MathSciNet  MATH  Google Scholar 

  19. Yılmaz, A., & Kucur, O. (2010). Error performance of joint transmit and receive antenna selection in two hop amplify-and-forward relay system over Nakagami-m fading channels. In IEEE 21st international symposium on PIMRC’10, pp. 2198–2203, IEEE.

  20. Yılmaz, A., & Kucur, O. (2010). Error performance of transmit antenna selection/maximal ratio combining in two hop amplify-and-forward relay system over Rayleigh fading channel. In IEEE 21st International sympoisum on PIMRC’10, pp. 357–361, IEEE.

  21. Yılmaz, A., & Kucur, O. (2014). Performance of joint transmit and receive antenna selection in dual hop amplify-and-forward relay network over Nakagami-m fading channels. Wireless Communications and Mobile Computing, 14(1), 103–114.

    Article  Google Scholar 

  22. Yılmaz, A., & Kucur, O. (2012). Performance of transmit antenna selection and maximal-ratio combining in dual hop amplify-and-forward relay network over Nakagami-m fading channels. Wireless Personal Communications, 67(3), 485–503.

    Article  Google Scholar 

  23. Altunbaş, İ., Yılmaz, A., Kucur, Ş. S., & Kucur, O. (2012). Performance analysis of dual-hop fixed-gain AF relaying systems with OSTBC over Nakagami-m fading channels. AEU-International Journal of Electronics and Communications, 66(10), 841–846.

    Article  Google Scholar 

  24. Yılmaz, A., & Kucur, O. (2012). End-to-end performance of transmit antenna selection and generalized selection combining in dual-hop amplify-and-forward relay network in the presence of feedback errors. Wireless Communications and Mobile Computing, accepted for publication, doi: 10.1002/wcm.2224.

  25. Louie, R. H., Li, Y., Suraweera, H. A., & Vucetic, B. (2009). Performance analysis of beamforming in two hop amplify and forward relay networks with antenna correlation. IEEE Transactions on Wireless Communications, 8(6), 3132–3141.

    Article  Google Scholar 

  26. Da Costa, D. B., & Aïssa, S. (2009). Cooperative dual-hop relaying systems with beamforming over Nakagami-m fading channels. IEEE Transactions on Wireless Communications, 8(8), 3950–3954.

    Article  Google Scholar 

  27. Lee, I.-H., & Kim, D. (2008). End-to-end BER analysis for dual-hop OSTBC transmissions over Rayleigh fading channels. IEEE Transactions on Communications, 56(3), 347–351.

    Article  Google Scholar 

  28. Duong, T. Q., Alexandropoulos, G. C., Zepernick, H., & Tsiftsis, T. A. (2011). Orthogonal space-time block codes with CSI-assisted amplify-and-forward relaying in correlated Nakagami-m fading channels. IEEE Transaction on Vehicular Technology, 60(3), 882–889.

    Article  Google Scholar 

  29. Dharmawansa, P., McKay, M. R., & Mallik, R. K. (2010). Analytical performance of amplify-and-forward MIMO relaying with orthogonal space-time block codes. IEEE Transaction on Communications, 58(7), 2147–2158.

    Article  Google Scholar 

  30. Chen, S., Wang, W., Zhang, X., & Zhao, D. (2009). Performance of amplify-and-forward MIMO relay channels with transmit antenna selection and maximal-ratio combining. In IEEE wireless communications and networking conference on WCNC’09, pp. 1–6.

  31. Kim, J.-B., & Kim, D. (2008). BER analysis of dual-hop amplify-and-forward MIMO relaying with best antenna selection in Rayleigh fading channels. IEICE Transaction on Communications, 91(8), 2772–2775.

    Article  Google Scholar 

  32. Elkashlan, M., Yeoh, P. L., Yang, N., Duong, T. Q., & Leung, C. (2012). A comparison of two MIMO relaying protocols in Nakagami-m fading. IEEE Transaction on Vehicular Technology, 61(3), 1416–1422.

    Article  Google Scholar 

  33. Jang, W. M. (2014). Diversity order and coding gain of general-order rectangular QAM in MIMO relay with TAS/MRC in Nakagami-m fading. IEEE Transaction on Vehicular Technology. Accepted for publication.

  34. Ferdinand, N. S., & Rajatheva, N. (2011). Unified performance analysis of two-hop amplify-and-forward relay systems with antenna correlation. IEEE Transaction on Wireless Communications., 10(9), 3002–3011.

    Article  Google Scholar 

  35. Kim, J.-B., & Kim, D. (2010). Performance of dual-hop amplify-and-forward beamforming and its equivalent systems in Rayleigh fading channels. IEEE Transaction on Communications, 58(3), 729–732.

    Article  Google Scholar 

  36. Ferdinand, N., Rajatheva, N., & Latva-Aho, M. (2013). Exact ergodic capacity of MIMO OSTBC amplify-and-forward relay network with antenna correlation. In Communications (ICC), 2013 IEEE International Conference on IEEE, pp. 5301–5305.

  37. Goldsmith, A. (2005). Wireless Communication. New York: Cambridge University Press.

    Book  Google Scholar 

  38. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). San Diego: Academic Press.

    MATH  Google Scholar 

  39. Win, M. Z., Mallik, R. K., & Chrisikos, G. (2003). Higher order statistics of antenna subset diversity. IEEE Transaction on Wireless Communications, 2(5), 871–875.

    Article  Google Scholar 

  40. David, H. A., & Nagaraja, H. N. (2003). Order statistics (3rd ed.). New York: Wiley.

    Book  MATH  Google Scholar 

  41. Wang, T., Cano, A., Giannakis, G. B., & Laneman, J. N. (2007). High-performance cooperative demodulation with decode-and-forward relays. IEEE Transaction on Communications, 55(7), 1427–1438.

    Article  Google Scholar 

  42. Oldham, K. B., Myland, J. C., & Spanier, J. (2009). An atlas of functions: With equator, the atlas function calculator (2nd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  43. Xu, F., Lau, F. C., & Yue, D.-W. (2010). Diversity order for amplify-and-forward dual-hop systems with fixed-gain relay under Nakagami fading channels. IEEE Transaction on Wireless Communications, 9(1), 92–98.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by TÜBİTAK with Project Number 112E010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Yılmaz.

Appendices

Appendix 1

The CDF of end-to-end SNR for the CSI-based gain is obtained as follows:

$$\begin{aligned} F_{\gamma _{\mathrm {csi}}}\left( x\right)&=\Pr \left( \frac{\gamma _1\gamma _2}{\gamma _1+\gamma _2}\le x\right) , \nonumber \\&= \int _{0}^{\infty } \int _{0}^{\frac{zx}{z-x}} f_{\gamma _1,\gamma _2}\left( y,z\right) dy dz, \nonumber \\&= \int _{0}^{\infty } \left[ \int _{0}^{\frac{zx}{z-x}} f_{\gamma _1}\left( y\right) dy\right] f_{\gamma _2}\left( z\right) dz, \nonumber \\&=\int _{0}^{x} f_{\gamma _2}\left( z\right) dz + \int _{x}^{\infty } F_{\gamma _1}\left( \frac{zx}{z-x}\right) f_{\gamma _2}\left( z\right) dz, \nonumber \\&= 1 - \int _{x}^{\infty } \bar{F}_{\gamma _1}\left( \frac{zx}{z-x}\right) f_{\gamma _2}\left( z\right) dz, \nonumber \\&= 1 - \int _{0}^{\infty } \bar{F}_{\gamma _1}\left( x+\frac{x^2}{w}\right) f_{\gamma _2}\left( x+w\right) dw, \end{aligned}$$
(23)

where \(\bar{F}_{\gamma _1}\left( \cdot \right) \) and \(f_{\gamma _2}\left( \cdot \right) \) are the complementary CDF of \(\gamma _1\) and the PDF of \(\gamma _2\), respectively. In order to derive the CDF of the end-to-end SNR for the CSI-based gain, \(\bar{F}_{\gamma _1}\left( \cdot \right) \) and \(f_{\gamma _2}\left( \cdot \right) \) have to be derived. We expressed \(\gamma _i,\, i=1,2\) in (4). Let \(Y_{ij}=\sum \nolimits _{k=1}^{B_i} X_{ijk}\) be defined, the CDF of \(Y_{ij}\) can be expressed as \(F_{Y_{ij}}(x)=\psi \left( mB_i,x\lambda _i\right) /{\Gamma }\left( mB_i\right) \), where \(\lambda _i=\frac{m_i}{\Xi _i\bar{\gamma }_i}\). Since \(\gamma _i=\max \nolimits _{1\le {j}\le {A_i}}\left\{ Y_{ij}\right\} \), CDF of \(\gamma _i\) can be derived by using the highest order statistics [40], as \(F_{\gamma _i}\left( x\right) =\left[ F_{Y_{ij}}\left( x\right) \right] ^{A_i}\). Then by substituting \(F_{Y_{ij}}\left( x\right) \), CDF of \(\gamma _{i}\) can be obtained as

$$\begin{aligned} F_{\gamma _i}\left( x\right) =\left[ \frac{\psi \left( m_iB_i,x\lambda _i\right) }{{\Gamma }\left( m_iB_i\right) }\right] ^{A_i}, \end{aligned}$$
(24)

and the PDF of \(\gamma _i\) is obtained as

$$\begin{aligned} f_{\gamma _i}\left( x\right) =\frac{A_i x^{m_iB_i-1}}{{\Gamma }\left( m_iB_i\right) } \lambda _i^{m_iB_i} e^{-x\lambda _i} \left[ \frac{\psi \left( m_iB_i,x\lambda _i\right) }{{\Gamma }\left( m_iB_i\right) }\right] ^{A_i-1}. \end{aligned}$$
(25)

Series expansion of the lower incomplete gamma function given in [38, eq. (8.352.6)] is substituted, then by using binomial expansion the following expression can be obtained

$$\begin{aligned} F_{\gamma _i}\left( x\right) =1+\sum _{\ell _i=1}^{A_i} \sum _{n_i=0}^{\ell _i\left( m_iB_i-1\right) } C_{A_i}^{\ell _i} (-1)^{\ell _i} \mu _{n_i} \left( \ell _i\right) \left( x\lambda _i\right) ^{n_i} e^{-\ell _ix\lambda _i}, \end{aligned}$$
(26)

where \(C_j^k=j!/[(j-k)!k!]\) denotes the coefficients of binomial expansion and \(\mu _{\ell }(k)\) are the coefficients of multinomial expansion given in [38, eq. (0.314)], and defined as \(\mu _{\ell }(k)=\frac{1}{a_0\ell }\sum _{\tau =1}^{\ell }(k\tau -\ell +\tau )\,a_{\tau }\, \mu _{\ell -\tau }(k),\, \ell \ge 1\), where \(a_{\tau }={1}/{\tau !}\) and \(\mu _0(k)=1\). By using the same way to obtain the CDF of \(\gamma _i\), the PDF of \(\gamma _i\) is obtained as

$$\begin{aligned} f_{\gamma _i}\left( x\right)&=\frac{A_i}{\Gamma \left( m_iB_i\right) } \sum _{\ell _i=0}^{A_i-1} \sum _{n_i=0}^{\ell _i\left( m_iB_i-1\right) } {C_{A_i-1}^{\ell _i} \lambda _i^{m_iB_i+n_i} \mu _{n_i}\left( \ell _i\right) (-1)^{\ell _i}} \nonumber \\&\quad\times\, x^{n_i+m_iB_i-1}e^{-x\left( \ell _i+1\right) \lambda _i}. \end{aligned}$$
(27)

By using the binomial expansion the first integrand in (23) is obtained as

$$\begin{aligned} \bar{F}_{\gamma _1}\left( x+\frac{x^2}{w}\right)&= \sum _{\ell _1=1}^{A_1} \sum _{n_1=0}^{\ell _1\left( m_1B_1-1\right) } \sum _{p_1=0}^{n_1} C_{A_1}^{\ell _1} C_{n_1}^{p_1} \lambda _1^{n_1} \mu _{n_1}\left( \ell _1\right) (-1)^{\ell _1+1} \nonumber \\&\quad \times\, w^{-p_1} x^{n_1+p_1} e^{-\ell _1\lambda _1\left( x+\frac{x^2}{w}\right) }. \end{aligned}$$
(28)

Similarly, by using the binomial expansion the second integrand in (23) is derived as

$$\begin{aligned} f_{\gamma _2}(x+w)&= \sum _{\ell _2=0}^{A_2-1} \sum _{n_2=0}^{\ell _2\left( m_2B_2-1\right) } \sum _{p_2=0}^{n_2+m_2B_2-1} \frac{A_2 C_{A_2}^{\ell _2} C_{n_2+m_2B_2-1}^{p_2} \lambda _2^{m_2B_2+n_2} \mu _{n_2}\left( \ell _2\right) }{\Gamma \left( m_2B_2\right) (-1)^{\ell _2} e^{(x+w)\left( \ell _2+1\right) \lambda _2}} \nonumber \\&\quad \times\, x^{n_2+m_2B_2-p_2-1} w^{p_2}. \end{aligned}$$
(29)

When (28) and (29) are substituted into (23),

$$\begin{aligned} F_{\gamma _{\mathrm {csi}}}(x)&= 1- \sum _{\varvec{\ell },\varvec{n},\varvec{p}} \frac{A_2C_{A_1}^{\ell _1}C_{n_1}^{p_1}C_{A_2}^{\ell _2}C_{n_2+m_2B_2-1}^{p_2}}{\Gamma \left( m_2B_2\right) (-1)^{\ell _1+\ell _2+1}} \mu _{n_1}\left( \ell _1\right) \mu _{n_2}\left( \ell _2\right) \lambda _1^{n_1} \lambda _2^{m_2B_2+n_2} \nonumber \\&\quad \times\, \frac{x^{n_1+n_2+m_2B_2+p_1-p_2-1}}{\exp \left[ x\left( \ell _1\lambda _1+\lambda _1\left( \ell _2+1\right) \right) \right] } \int _{0}^{\infty } w^{p_2-p_1} e^{-w\lambda _2\left( \ell _2+1\right) } e^{-\ell _1\lambda _1{x^2}/{w}} dw \end{aligned}$$
(30)

is obtained. The integral in (30) is taken with the help of [38, eq. (3.471.9)], then the CDF of \(\gamma _{\mathrm {csi}}\) is derived as given in (7).

Appendix 2

The CDF of the end-to-end SNR for the fixed relay gain can be obtained as follows:

$$\begin{aligned} F_{\gamma _{\mathrm {fix}}}\left( x\right)&=\Pr \left( \frac{\gamma _1\gamma _2}{\gamma _2+Z}\le x\right) , \nonumber \\&= \int _{0}^{\infty } \int _{0}^{x+\frac{xZ}{y}} f_{\gamma _1,\gamma _2}\left( w,y\right) dw dy, \nonumber \\&=\int _{0}^{\infty } F_{\gamma _1}\left( x+\frac{xZ}{y}\right) f_{\gamma _2}\left( y\right) dy. \end{aligned}$$
(31)

The first integrand can be obtained by using binomial expansion as

$$\begin{aligned} F_{\gamma _1}\left( x+\frac{xZ}{y}\right)&= 1+ \sum _{\ell _1=1}^{A_1} \sum _{n_1=0}^{\ell _1\left( m_1B_1-1\right) } \sum _{p_1=0}^{n_1} C_{A_1}^{\ell _1} C_{n_1}^{p_1} Z^{p_1} \mu _{n_1}\left( \ell _1\right) (-1)^{\ell _1} \nonumber \\&\quad \times\, w^{-p_1} \left( x\lambda _1\right) ^{n_1} e^{-\ell _1\lambda _1\left( x+\frac{xZ}{y}\right) }. \end{aligned}$$
(32)

When (27) and (32) are substituted into (31)

$$\begin{aligned} F_{\gamma _{\mathrm {fix}}}(x)&=1+\frac{A_2}{\Gamma \left( m_2B_2\right) } \sum _{\varvec{\ell },\varvec{n},p_1} C_{n_1}^{p_1} C_{A_1}^{\ell _1} C_{A_2}^{\ell _2} \mu _{n_1}\left( \ell _1\right) \mu _{n_2}\left( \ell _2\right) (-1)^{\ell _1+\ell _2} Z^{p_1} e^{-x\ell _1\lambda _1} \nonumber \\&\quad\times\, \left( x \lambda _1\right) ^{n_1} \left( \lambda _2\right) ^{m_2B_2+n_2} \int _{0}^{\infty } y^{n_2+m_2B_2-p_1-1} e^{-y\lambda _2\left( \ell _2+1\right) } e^{-\ell _1 \lambda _1 \left( \frac{xZ}{y}\right) } dy \end{aligned}$$
(33)

is obtained. The integral in (33) is taken with the help of [38, eq. (3.471.9)], then the CDF of \(\gamma _{\mathrm {fix}}\) is derived as given in (8).

Appendix 3

The received SNR for the CSI-based gain is expressed with a tight approximation as \(\gamma _{\mathrm {csi}} \le \gamma _{\mathrm {acsi}}=\min \left\{ \gamma _1, \gamma _2\right\} \) [41]. CDF of \(\gamma _{\mathrm {acsi}}\) can be expressed as \(F_{\gamma _{\mathrm {acsi}}}\left( x\right) =1-\bar{F}_{\gamma _1}\left( x\right) \bar{F}_{\gamma _2}\left( x\right) \), and by taking the first derivative of \(F_{\gamma _{\mathrm {acsi}}}\left( x\right) \) PDF of \(\gamma _{\mathrm {acsi}}\) is derived as

$$\begin{aligned} f_{\gamma _{\mathrm {acsi}}}(x)= f_{\gamma _1}(x)+ f_{\gamma _2}(x)- f_{\gamma _1}(x)F_{\gamma _2}(x)- f_{\gamma _2}(x) F_{\gamma _1}(x). \end{aligned}$$
(34)

By the asymptotic characteristic of the lower incomplete gamma function, which is \(\psi \left( v,x\rightarrow \infty \right) \approx {x^v/v}\) given in [42, eq. (45:9:1)], \(F_{\gamma _i}\left( x\right) \) and \(f_{\gamma _i}\left( x\right) ,\, i=1,2\) are expressed, respectively as

$$\begin{aligned}&F_{\gamma _i}(x)\approx \beta _i\left( \frac{x}{\bar{\gamma }}\right) ^{t_i}, \end{aligned}$$
(35)
$$\begin{aligned}&\quad f_{\gamma _i}(x)\approx t_i \beta _i\left( \frac{x}{\bar{\gamma }}\right) ^{t_i-1}. \end{aligned}$$
(36)

In (35) and (36), \(t_i=m_iA_iB_i,\, \beta _i=\frac{1}{\left[ \Gamma \left( m_iB_i+1\right) \right] ^{A_i}}\left( \frac{m_i}{\Xi _i}\right) ^{t_i},\, i=1,2\) and \(\bar{\gamma }=\bar{\gamma }_1=\kappa \bar{\gamma }_2\), where \(\kappa \) is a positive constant, are defined. When (35) and (36) are substituted into (34) the following expression is obtained

$$\begin{aligned} f_{\gamma _{\mathrm {acsi}}}(x)&\approx t_1\beta _1\left( \frac{x}{\bar{\gamma }}\right) ^{t_1-1} + t_2\beta _2\left( \frac{x\kappa }{\bar{\gamma }}\right) ^{t_2-1} \nonumber \\&-t_1\beta _1\beta _2\kappa ^{t_2} \left( \frac{x}{\bar{\gamma }}\right) ^{t_1+t_2-1} - t_2\beta _1\beta _2\kappa ^{t_2-1}\left( \frac{x}{\bar{\gamma }}\right) ^{t_1+t_2-1}. \end{aligned}$$
(37)

The first non-zero derivative of (37) is obtained for \((t-1)\)-th derivative, where \(t=\min \left\{ t_1,t_2\right\} \). By this way asymptotic PDF of \(\gamma _{\mathrm {csi}}\) is derived as

$$\begin{aligned} f_{\gamma _{\mathrm {csi}}}(x)\approx \alpha _{\mathrm {csi}}\left( \frac{x}{\bar{\gamma }}\right) ^{t-1}, \end{aligned}$$
(38)

where \(\alpha _{\mathrm {csi}}\) is given in (19).

Similarly, for the fixed relay gain the end-to-end SNR is expressed with a tight approximation as \(\gamma _{\mathrm {fix}} \le \gamma _{\mathrm {afix}}=\min \left\{ \gamma _1, \gamma _1\gamma _2/Z\right\} \) [43]. CDF of \(\gamma _{\mathrm {afix}}\) can be expressed as

$$\begin{aligned} F_{\gamma _{\mathrm {afix}}}(x)=F_{\gamma _1}(x)+\Pr \left( x<\gamma _1<\frac{xZ}{\gamma _2}\right) . \end{aligned}$$
(39)

The asymptotic expression for \(F_{\gamma _1}\) is as given in (35). On the other hand the second term can be derived as follows:

$$\begin{aligned} \Pr \left( x<\gamma _1<\frac{xZ}{\gamma _2}\right)&=\int _x^{\infty }f_{\gamma _1}(u)\int _0^{\frac{xZ}{u}}f_{\gamma _2}(v)dvdu \nonumber \\&=\int _x^{\infty }f_{\gamma _1}(u)F_{\gamma _2}\left( \frac{xZ}{u}\right) du. \end{aligned}$$
(40)

\(f_{\gamma _1}(x)=\frac{t_1\beta _1x^{t_1-1}}{\left( \bar{\gamma }_1\right) ^{t_1}}e^{-x\lambda _1}\) and (35) are substituted for the first and the second integrand, respectively we obtain

$$\begin{aligned} \Pr \left( x<\gamma _1<\frac{xZ}{\gamma _2}\right)&=\frac{t_1\beta _1\beta _2\kappa ^{t_2}Z^{t_2}}{\bar{\gamma }^{t_1+t_2}}\int _x^{\infty } u^{t_1-t_2-1} e^{-u\lambda _1}du \nonumber \\&=\frac{t_1\beta _1\beta _2\kappa ^{t_2}Z^{t_2}e^{-x\lambda _1}x^{t_1-t_2-1}}{\bar{\gamma }^{t_1+t_2}}\int _0^{\infty } \left( 1+\frac{y}{x}\right) ^{t_1-t_2-1} e^{-y\lambda _1}dy \end{aligned}$$
(41)

With the help of [43, eq. (11)] and by utilizing \(Z=1+\bar{\gamma }_1\rightarrow \bar{\gamma }_1\) and \(e^{-x\lambda _1}\rightarrow 1\) for the high SNR regime (i.e., \(\bar{\gamma }\rightarrow \infty \)) into (41) we obtain

$$\begin{aligned} \Pr \left( x<\gamma _1<\frac{xZ}{\gamma _2}\right) = {\left\{ \begin{array}{ll} {\frac{t_1\beta _1\beta _2}{\left( t_2-t_1\right) }\left( \frac{x}{\bar{\gamma }}\right) ^{t_1}}, & t_1<t_2, \\ {t_1\beta _1\beta _2\ln \left( \frac{1}{\lambda _1}\right) \left( \frac{x}{\bar{\gamma }}\right) ^t}, & t_1=t_2=t, \\ {\frac{t_1\beta _1\beta _2\Gamma \left( t_1-t_2\right) }{\left( m_1/\Xi _1\right) ^{t_1-t_2}}\left( \frac{x}{\bar{\gamma }}\right) ^{t_2}}, & t_1>t_2. \end{array}\right. } \end{aligned}$$
(42)

After (35) and (42) are substituted into (39), by having the first derivative the asymptotic PDF of \(\gamma _{\mathrm {fix}}\) is obtained as \(f_{\gamma _{\mathrm {fix}}}(x)\approx \alpha _{\mathrm {fix}}\left( x/\bar{\gamma }\right) ^{t-1}\), where \(\alpha _{\mathrm {fix}}\) is given in (20).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, A., Kucur, O. Unified Performance Analysis of Multi-antenna Techniques in Dual Hop Networks over Nakagami-m Fading Channels. Wireless Pers Commun 86, 1571–1592 (2016). https://doi.org/10.1007/s11277-015-3007-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-3007-9

Keywords

Navigation