Skip to main content
Log in

Secure Cognitive Relay Network: Joint the Impact of Imperfect Spectrum Sensing and Outdated Feedback

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we consider cognitive relay networks with Nth best relay and beamforming schemes under the joint impact of imperfect spectrum sensing and outdated channel feedback. Specifically, we examine the secrecy performance by deriving the exact and asymptotic analytical expressions for the secrecy outage probability. Based on the analysis, we observe that these two types of channel impairments, i.e., imperfect spectrum sensing and outdated channel feedback, greatly affect the system performance. Particularly, the outdated channel feedback (i.e., the outdated coefficient \(\rho\,<\,1\)) reduces the secrecy outage diversity gain of the two schemes, i.e., Nth best relay and beamforming, to one regardless of the number of relays. Our proposed analysis provides a helpful guideline for security system designers to cope with the unpleasant channel impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79–89.

    Article  Google Scholar 

  2. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Article  Google Scholar 

  3. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radio more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  4. Cabric, D., Mishra, S. M., & Brodersen, R. W., (2004). Implementation issues in spectrum sensing for cognitive radios. In Proceeding of Asilomar conference on signals, systems, and computers (pp. 772–776).

  5. Wu, Q., Ding, G., Wang, J., & Yao, Y. (2013). Spatial-temporal opportunity detection for spectrum-heterogeneous cognitive radio networks: Two-dimensional sensing. IEEE Transactions on Wireless Communications, 12(2), 516–526.

    Article  Google Scholar 

  6. Zou, Y., Zhu, J., & Zheng, B. (2014). Outage analysis of multi-relay selection for cognitive radio with imperfect spectrum sensing. In Proceeding of the 2nd IEEE global conference on signal and information processing (pp. 1–5).

  7. Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888.

    Article  MathSciNet  Google Scholar 

  8. Huang, J., Mukherjee, A., & Swindlehurst, A. L. (2013). Secure communication via an untrusted non-regenerative relay in fading channels. IEEE Transactions on Signal Processing, 61(10), 2536–2550.

    Article  MathSciNet  Google Scholar 

  9. Fan, L., Lei, X., Duong, T. Q., Elkashlan, M., & Karagiannidis, G. K. (2014). Secure multiuser communications in multiple amplify-and-forward relay networks. IEEE Transactions on Wireless Communications, 62(9), 3299–3310.

    Article  Google Scholar 

  10. Li, Q., Yang, Y., Ma, W., Lin, M., Ge, J., & Lin, J. (2015). Robust cooperative beamforming and artificial noise design for physical-layer secrecy in AF multi-antenna multi-relay networks. IEEE Transactions on Signal Processing, 63(1), 206–220.

    Article  MathSciNet  Google Scholar 

  11. Shu, Z., Qian, Y., & Ci, S. (2013). On physical layer security for cognitive radio networks. IEEE Network, 7(3), 28–33.

    Google Scholar 

  12. Pei, Y., Liang, Y.-C., Teh, K. C., & Li, K. H. (2011). Secure communication in multiantenna cognitive radio networks with imperfect channel state information. IEEE Transactions on Signal Processing, 59(4), 1683–1693.

    Article  MathSciNet  Google Scholar 

  13. Zou, Y., Wang, X., & Shen, W. (2013). Physical-layer security with multiuser scheduling in cognitive radio networks. IEEE Transactions on Wireless Communications, 61(12), 5103–5113.

    Article  Google Scholar 

  14. Liu, Y., Wang, L., Duy, T. T., Elkashlan, M., & Duong, T. Q. (2015). Relay selection for security enhancement in cognitive relay networks. IEEE Wireless Communications Letters, 4(1), 46–49.

  15. Sibomana, L., Zepernick, H., & Tran, H. (2014). On physical layer security for reactive DF cognitive relay networks. In IEEE global communications conference, Austin, USA.

  16. Zhu, J. (2013). Security-reliability trade-off for cognitive radio networks in the presence of eavesdropping attack. EURASIP Journal on Advances in Signal Processing, 169, 1–10.

    Google Scholar 

  17. Zou, Y., Champagne, B., Zhu, W., & Hanzo, L. (2014). Relay-selection improves the security–reliability trade-off in cognitive radio systems. arXiv:1411.0228v1

  18. Duy, T. T., & Kong, H. Y. (2013). Performance analysis of incremental amplify-and-forward relaying protocols with Nth best partial relay selection under interference constraint. Wireless Personal Communications, 71(4), 2741–2757.

    Article  Google Scholar 

  19. Zhang, X., Yan, Z., Gao, Y., & Wang, W. (2013). On the study of outage performance for cognitive relay networks (CRN) with the Nth best-relay selection in Rayleigh-fading channels. IEEE Wireless Communications Letters, 2(1), 110–113.

    Article  Google Scholar 

  20. Vicario, J. L., Bel, A., Lopez-Salcedo, J. A., & Seco, G. (2009). Opportunistic relay selection with outdated CSI: Outage probability and diversity analysis. IEEE Transactions on Wireless Communications, 8(6), 2872–2876.

    Article  Google Scholar 

  21. Barros, J., & Rodrigues, M. (2006). Secrecy capacity of wireless channels. In Proceeding of IEEE international symposium on information theory (ISIT) (pp. 356–360). Seattle, USA.

  22. Vaughan, R. J., & Venables, W. N. (1972). Permanent expressions for order statistics densities. Journal of the Royal Statistical Society Series B, 34(2), 308–310.

    MathSciNet  MATH  Google Scholar 

  23. Exton, H. (1976). Multiple hypergeometric functions and applications. New York: Wiley Press.

    MATH  Google Scholar 

  24. Gradshteyn, I., & Ryzhik, I. (2007). Table of integrals, series, and products (7th ed.). New York: Academic Press Inc.

    MATH  Google Scholar 

  25. Huang, Y., Al-Qahtani, F., Zhong, C., Wu, Q., Wang, J., & Alnuweiri, H. (2014). Performance analysis of multiuser multiple antenna relaying networks with co-channel interference and feedback delay. IEEE Transactions on Wireless Communications, 62(1), 59–73.

    Article  Google Scholar 

  26. Ma, Y., Zhang, D., Leith, A., & Wang, Z. (2009). Error performance of transmit beamforming with delayed and limited feedback. IEEE Transactions on Wireless Communications, 8(3), 1164–1170.

    Article  Google Scholar 

  27. Cai, Y., Guan, X., & Yang, W. (2014). Secure transmission design and performance analysis for cooperation exploring outdated CSI. IEEE Communications Letters, 18(9), 1637–1640.

    Article  Google Scholar 

  28. Zou, Y., Wang, X., & Shen, W. (2013). Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE Journal on Selected Areas in Communications, 31(10), 2099–2111.

    Article  Google Scholar 

  29. Zou, Y., Wang, X., Shen, W., & Hanzo, L. (2014). Security versus reliability analysis of opportunistic relaying. IEEE Transactions on Vehicular Technology, 63(6), 2653–2661.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Shandong Provincial Natural Science Foundation of China (ZR2010FM011, ZR2014FQ012), the National Science and Technology Pillar Program of China during the 12th Five-Year Plan Period (2014BAK12B06), and Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 102.04-2013.13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjie Wang.

Appendices

Appendix 1: Proof of Theorem 1

With assumption \(K=|{\mathbb {D}}_{{K_c}}|\), based on (2), (12) and (13), \(P_{SO1}\) in (20) is expressed as

$$\begin{aligned} P_{SO1}^{N}& = \prod _{k \in {{\mathbb {D}}_{{K_c}}}}\Pr (\gamma _{{\mathsf {SR}}_k}>\gamma _{th1}) \prod _{m \in {\mathbb {\overline{D}}_{K_c}}}\Pr (\gamma _{{\mathsf {SR}}_m}<\gamma _{th1}) \\&\quad \times\,\Pr \left( \left[ C_{{\mathsf {R}}_{N}{\mathsf {D}}}-C_{{\mathsf {R}}_{N}{\mathsf {E}}} \right] ^{+}<R_{s}|\alpha =0\right) \\&=\phi _{K}(\gamma _{th1}) \underbrace{\Pr \left( \left[ \frac{1+\gamma _{{\mathsf {R}}_{N}{\mathsf {D}}}}{1 +\gamma _{{\mathsf {R}}_{N}{\mathsf {E}}}}\right] ^{+}<\gamma _{th2}\right) }_{P_{SOA}^{N}}. \end{aligned}$$
(48)

According to (30), \(\phi _{K}(\gamma _{th1})\) is obtained as follows.

$$\begin{aligned} \phi _{K}(\gamma _{th1})& = \prod _{k \in {{\mathbb {D}}_{{K_c}}}}\Pr (\gamma _{{\mathsf {SR}}_k}>\gamma _{th1}) \prod _{m \in {\mathbb {\overline{D}}_{K_c}}}\Pr (\gamma _{{\mathsf {SR}}_m}<\gamma _{th1}) \\&=\exp \left( -\frac{K\gamma _{th1}}{\overline{\gamma }_{{\mathsf {SR}}}}\right) \left[ 1-\exp \left( -\frac{\gamma _{th1}}{\overline{\gamma }_{{\mathsf {SR}}}}\right) \right] ^{M-K}. \end{aligned}$$
(49)

\(P_{SOA}^{N}=1\) in (48) when \(K<N\). Otherwise, \(P_{SOA}^{N}\) is derived as

$$\begin{aligned} {P_{SOA}^{N}}& = \Pr \left( \frac{1+\gamma _{{\mathsf {R}}_{N}{\mathsf {D}}}}{1+\gamma _{{\mathsf {R}}_{N} {\mathsf {E}}}}<\gamma _{th2}, \gamma _{{\mathsf {R}}_{N}{\mathsf {D}}}>\gamma _{{\mathsf {R}}_{N}{\mathsf {E}}}\right) \\&\quad +\,\Pr \left( \frac{1+\gamma _{{\mathsf {R}}_{N}{\mathsf {D}}}}{1+\gamma _{{\mathsf {R}}_{N} {\mathsf {E}}}}<\gamma _{th2}, \gamma _{{\mathsf {R}}_{N}{\mathsf {D}}}<\gamma _{{\mathsf {R}}_{N}{\mathsf {E}}}\right) \\&=\sum _{t=0}^{K-N} \frac{\theta _{t}}{B_{t}} \left\{ 1- \exp \left[ -\frac{B_{t}(\gamma _{th2}-1)}{A_{t}\overline{\gamma }_{\mathsf {RD}}}\right] \frac{{A_{t}\overline{\gamma }_{\mathsf {RD}}}}{{B_{t}{\overline{\gamma }_{\mathsf {RE}}} \gamma _{th2}}+{A_{t}\overline{\gamma }_{\mathsf {RD}}}} \right\} . \end{aligned}$$
(50)

By substituting (50) into (48), \(P_{SO1}^{N}\) is obtained as

$$\begin{aligned} P_{SO1}^{N}&=\phi _{K}(\gamma _{th1}) \left\{ U(N-K) + U(K-N)\sum _{t=0}^{K-N} \frac{\theta _{t}}{B_{t}} \right. \\&\quad \times\,\left. \left\{ 1- \exp \left[ -\frac{B_{t}(\gamma _{th2}-1)}{A_{t}\overline{\gamma }_{\mathsf {RD}}}\right] \frac{{A_{t}\overline{\gamma }_{\mathsf {RD}}}}{{B_{t}{\overline{\gamma }_{\mathsf {RE}}} \gamma _{th2}}+{A_{t}\overline{\gamma }_{\mathsf {RD}}}} \right\} \right\} . \end{aligned}$$
(51)

\(P_{SO2}\) in (20) is different from \(P_{SO1}\) for the reason that the failure of spectrum sensing will introduce the interference from active PUs to the secondary network, i.e., \(\alpha =1\), so \(P_{SO2}\) is expressed as

$$\begin{aligned} P_{SO2}^{N}& = \prod _{k \in {{\mathbb {D}}_{{K_c}}}}\Pr \left( \frac{\gamma _{{\mathsf {SR}}_k}}{1 +\gamma _{{\mathsf {PR}}_{k}}}>\gamma _{th1}\right) \prod _{m \in {\mathbb {\overline{D}}_{K_c}}}\Pr \left( \frac{\gamma _{{\mathsf {SR}}_m}}{1 +\gamma _{{\mathsf {PR}}_{m}}}<\gamma _{th1}\right) \\&\quad \times\,\underbrace{\Pr \left( \left[ \frac{1+Z_N}{1+Y_N}\right] ^{+}<\gamma _{th2}\right) }_{P_{SOB}^{N}}, \end{aligned}$$
(52)

where \(Z_N=\frac{\gamma _{{\mathsf {R}}_{N}{\mathsf {D}}}}{1+\gamma _{{\mathsf {P}}{\mathsf {D}}}}\), \(Y_N=\frac{\gamma _{{\mathsf {R}}_{N}{\mathsf {E}}}}{1+\gamma _{{\mathsf {P}}{\mathsf {E}}}}\),

\(\Pr \left( \frac{\gamma _{{\mathsf {SR}}_k}}{1+\gamma _{{\mathsf {PR}}_{k}}}>\gamma _{th1}\right) \) in (52) is derived as

$$\begin{aligned}&\Pr \left( \frac{\gamma _{{\mathsf {SR}}_k}}{1+\gamma _{{\mathsf {PR}}_{k}}}>\gamma _{th1}\right) =\exp \left( -\frac{\gamma _{th1}}{\overline{\gamma }_{{\mathsf {SR}}}}\right) \frac{\overline{\gamma }_{{\mathsf {SR}}}}{\gamma _{th1}\overline{\gamma }_{{\mathsf {PR}}} +\overline{\gamma }_{{\mathsf {SR}}}}. \end{aligned}$$
(53)

With the similar method as (53), \(\Pr \left( \frac{\gamma _{{\mathsf {SR}}_m}}{1+\gamma _{{\mathsf {PR}}_{m}}}<\gamma _{th1}\right) \) in (52) is derived as

$$\begin{aligned} \Pr \left( \frac{\gamma _{{\mathsf {SR}}_m}}{1+\gamma _{{\mathsf {PR}}_{m}}}<\gamma _{th1}\right)& = 1-\exp \left( -\frac{\gamma _{th1}}{\overline{\gamma }_{{\mathsf {SR}}}}\right) \frac{\overline{\gamma }_{{\mathsf {SR}}}}{\gamma _{th1}\overline{\gamma }_{{\mathsf {PR}}} +\overline{\gamma }_{{\mathsf {SR}}}}. \end{aligned}$$
(54)

When considering \({P_{SOB}^{N}},\,{P_{SOB}^{N}}=1\) for \(K<N\), otherwise, \({P_{SOB}^{N}}\) is derived as

$$\begin{aligned} {P_{SOB}^{N}} = \int _{0}^{\infty } F_{{Z_N}}\left( {\gamma _{th2}(1+y)-1}\right)\,f_{{Y_N}}\left( {y}\right) dy. \end{aligned}$$
(55)

With the aid of (29), \(F_{{Z_N}}\left( {z}\right) \) and \(F_{{Y_N}}\left( {y}\right) \) are derived as follows

$$\begin{aligned} F_{{Z_N}}\left( {z}\right)& = \int _{0}^{\infty }F_{{\gamma _{{\mathsf {R}}_{N}{\mathsf {D}}}}}\left( {(1+x)z}\right)\,f_{{\gamma _{{\mathsf {P}}{\mathsf {D}}}}}\left( {x}\right) dx \\& = \sum _{t=0}^{K-N} \frac{\theta _{t}}{B_{t}} \left[ 1- \frac{\exp \left( -\xi _{2a} z\right) }{z \xi _{2a} \overline{\gamma }_{{\mathsf {P}}{\mathsf {D}}}+1} \right] , \end{aligned}$$
(56)
$$\begin{aligned} F_{{Y_N}}\left( {y}\right)& = \int _{0}^{\infty }F_{{\gamma _{{\mathsf {R}}_{N}{\mathsf {E}}}}}\left( {(1+x)y}\right)\,f_{{\gamma _{{\mathsf {P}}{\mathsf {E}}}}}\left( {x}\right) dy \\& = 1- \exp \left( -\frac{y}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}} \right) \frac{1}{\xi _{2b} y+1}. \end{aligned}$$
(57)

By differentiating (57), the \(f_{{Y_N}}\left( {y}\right) \) is obtained as

$$\begin{aligned}&f_{{Y_N}}\left( {y}\right) = \exp \left( -\frac{y}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}} \right) \left( \frac{1}{{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}}(\xi _{2b} y+1)} +\frac{\xi _{2b}}{(\xi _{2b} y+1)^{2}} \right) . \end{aligned}$$
(58)

By substituting (56) and (58) into (55), \({P_{SOB}^{N}}\) is derived as

$$\begin{aligned}{P_{SOB}^{N}} &= \int _{0}^{\infty } \sum _{t=0}^{K-N} \frac{\theta _{t}}{B_{t}} \left[ 1-\frac{\exp \left( -\xi _{2a}(\gamma _{th2}(1+y)-1)\right) }{(\gamma _{th2}(1+y)-1) \xi _{2a}\overline{\gamma }_{{\mathsf {P}}{\mathsf {D}}}+1} \right] \\&\quad \times\,\left( \frac{1}{{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}}(\xi _{2b} y+1)} +\frac{\xi _{2b}}{(\xi _{2b} y+1)^{2}} \right) \exp \left( -\frac{y}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}} \right) dy \\ &= \sum _{t=0}^{K-N} \frac{\theta _{t}}{B_{t}} \left\{ 1- \exp \left[ -\xi _{2a}(\gamma _{th2}-1)\right] \frac{\xi _{2c}}{\xi _{2a}\gamma _{th2}\overline{\gamma }_{{\mathsf {P}}{\mathsf {D}}}} \right. \\&\quad \times\,\left\{ \frac{1}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}} \varPhi _{2}\left( 1,1,1;2;\xi _{2b},\xi _{2c},\xi _{2a}\gamma _{th2} +\frac{1}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}}\right) \right. \\&\quad +\,\left. \left. \xi _{2b} \varPhi _{2}\left( 1,2,1;2;\xi _{2b},\xi _{2c},\xi _{2a}\gamma _{th2}+ \frac{1}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}}\right) \right\} \right\} . \end{aligned}$$
(59)

By substituting (53), (54) and (59) into (52), \(P_{SO2}^{N}\) is obtained as

$$\begin{aligned}P_{SO2}^{N} &= \eta _{K}(\gamma _{th1}) \left\{ U(N-K) + U(K-N) \right. \\&\quad \times\,\sum _{t=0}^{K-N} \frac{\theta _{t}}{B_{t}} \left\{ 1-\exp \left[ -\xi _{2a}(\gamma _{th2}-1)\right] \frac{\xi _{2c}}{\xi _{2a}\gamma _{th2}\overline{\gamma }_{{\mathsf {P}}{\mathsf {D}}}} \right. \\&\quad \times\,\left\{ \frac{1}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}} \varPhi _{2}\left( 1,1,1;2;\xi _{2b},\xi _{2c},\xi _{2a}\gamma _{th2} +\frac{1}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}}\right) \right. \\&\quad +\,\left. \left. \left. \xi _{2b} \varPhi _{2}\left( 1,2,1;2;\xi _{2b},\xi _{2c},\xi _{2a}\gamma _{th2} +\frac{1}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}}\right) \right\} \right\} \right\} . \end{aligned}$$
(60)

Finally, substituting (23), (24), (51), (60) into (20), the outage probability \(P_{sout}^{N}\) is obtained as (31).

Appendix 2: Proof of Lemma 1

Based on Taylor expansion, \(\phi _K\), \(\eta _K\) and the CDF \(F_{{\gamma _{{\mathsf {R}}_{N}{\mathsf {D}}}}}\left( {z}\right) \) are expressed as follows

$$\begin{aligned} \phi _{K}^{\infty }(\gamma _{th1})& = \left( \frac{\gamma _{th1}}{\overline{\gamma }_{{\mathsf {SR}}}}\right) ^{M-K}, \end{aligned}$$
(61)
$$\begin{aligned} \eta _{K}^{\infty }(\gamma _{th1})& = \left[ \frac{(1+{\overline{\gamma }_{{\mathsf {PR}}}})\gamma _{th1}}{\overline{\gamma }_{{\mathsf {SR}}}}\right] ^{M-K}, \end{aligned}$$
(62)
$$\begin{aligned} F_{{\gamma _{{\mathsf {R}}_{N}{\mathsf {D}}}}}^{\infty }\left( {z}\right)& = \left\{ \begin{array}{ll} \sum \nolimits _{t=0}^{K_N} \frac{\theta _{t}}{A_{t}\overline{\gamma }_{\mathsf {RD}}}z,& \rho\,<\,1,\,\,K\,\,\ge\,\,{N}\\ \theta _{0}\frac{z^{K_{N-1}}}{\overline{\gamma }_{\mathsf {RD}}^{K_{N-1}}}, & \rho =1,\,\,K\ge {N}\\ 1, & K\,<\,N.\\ \end{array} \right. \end{aligned}$$
(63)

Then substituting (63) into (50), the asymptotic \(P_{SOA}^{N}\) is derived

$$\begin{aligned} P_{SOA}^{N\infty }& = \left\{ \begin{array}{ll} \frac{\lambda _{N1a}^{\infty }(\gamma _{th2})}{\overline{\gamma }_{\mathsf {RD}}} , &{} \rho\,<\,1\\ \frac{\lambda _{N1b}^{\infty }(\gamma _{th2})}{\overline{\gamma }_{\mathsf {RD}}^{K_{N-1}}} , &{} \rho =1. \end{array} \right. \end{aligned}$$
(64)

Similarly, substituting (63) into (56), the asymptotic \(F_{{Z_N}}\left( {z}\right) \) for \(K>N\) is derived,

$$\begin{aligned} F_{{\gamma _{Z_{N}}}}^{\infty }\left( {z}\right)& = \left\{ \begin{array}{ll} \sum \limits _{t=0}^{K_N} \frac{\theta _{t}(1+\overline{\gamma }_{\mathsf {PD}})}{A_{t} \overline{\gamma }_{\mathsf {RD}}}z,&{} \rho\,<\,1\\ \theta _{0}\sum \limits _{u=0}^{K_{N-1}}\sum \nolimits _{v=0}^{u} \frac{\kappa _{uv} z^{K_{N-1}-v}}{\overline{\gamma }_{\mathsf {RD}}^{K_{N-1}}}, &{} \rho =1.\\ \end{array} \right. \end{aligned}$$
(65)

Then inserting \(F_{{Z_N}}^{\infty }\left( {z}\right) \) into (55), we obtain

$$\begin{aligned}&P_{SOB}^{N\infty } = \left\{ \begin{array}{ll} \frac{\lambda _{N2a}^{\infty }(\gamma _{th2})}{\overline{\gamma }_{\mathsf {RD}}} , &{} \rho\,<\,1\\ \frac{\lambda _{N2b}^{\infty }(\gamma _{th2})}{\overline{\gamma }_{\mathsf {RD}}^{K_{N-1}}} , &{} \rho =1. \end{array} \right. \end{aligned}$$
(66)

Finally, substituting (61) and (64) into (48), the asymptotic \(P_{SO1}^{N}\) can be obtained. Similarly, substituting (62) and (66) into (52), the asymptotic \(P_{SO2}^{N}\) can be obtained. Then inserting the asymptotic \(P_{SO1}^{N}\) and \(P_{SO2}^{N}\) into (20), the asymptotic outage probability is derived as (32).

Appendix 3: Proof of Theorem 2

When considering \(P_{SO1}^{BF}\), the SUs are not affected by the interference from PUs, i.e., \(\alpha =0\). Based on (2), (17), (18), so \(P_{SO1}^{BF}\) for the decoding set \(|{\mathbb {D}}_{{K_c}}|\) is expressed as

$$\begin{aligned} P_{SO1}^{BF}& = \prod _{k \in {{\mathbb {D}}_{{K_c}}}}\Pr (\gamma _{{\mathsf {SR}}_k}>\gamma _{th1}) \prod _{m \in {\mathbb {\overline{D}}_{K_c}}}\Pr (\gamma _{{\mathsf {SR}}_m}<\gamma _{th1}) \\&\quad \times\,\Pr \left( \left[ C_{{\mathsf {R}}{\mathsf {D}}}-C_{{\mathsf {R}} {\mathsf {E}}}\right] ^{+}<R_{s}|\alpha =0\right) \\&=\phi _{K}(\gamma _{th1}) \underbrace{\Pr \left( \left[ \frac{1+\gamma _{{\mathsf {R}} {\mathsf {D}}}}{1+\gamma _{{\mathsf {R}}{\mathsf {E}}}}\right] ^{+}<\gamma _{th2}\right) }_{P_{SOA}^{BF}}. \end{aligned}$$
(67)

\(P_{SOA}^{BF}=1\) in (67) when \(K<N\). Otherwise, with the aid of (33) and (34), \(P_{SOA}^{BF}\) is derived as

$$\begin{aligned} {P_{SOA}^{BF}}& = \Pr \left( \frac{1+\gamma _{{\mathsf {R}}{\mathsf {D}}}}{1+\gamma _{{\mathsf {R}} {\mathsf {E}}}}<\gamma _{th2}, \gamma _{{\mathsf {R}}{\mathsf {D}}}>\gamma _{{\mathsf {R}}{\mathsf {E}}}\right) + \Pr \left( \frac{1+\gamma _{{\mathsf {R}}{\mathsf {D}}}}{1+\gamma _{{\mathsf {R}} {\mathsf {E}}}}<\gamma _{th2}, \gamma _{{\mathsf {R}}{\mathsf {D}}}<\gamma _{{\mathsf {R}}{\mathsf {E}}}\right) \\& = \int _{0}^{\infty } \int _{0}^{\gamma _{th2}(1+y)-1} f_{{\gamma _{{\mathsf {R}}{\mathsf {D}}}}}\left( {x}\right) f_{{\gamma _{{\mathsf {R}}{\mathsf {E}}}}}\left( {y}\right) dxdy \\&=1- \sum _{k=0}^{K-1}\sum _{u=0}^{K-1-k} \sum _{v=0}^{u} \frac{\beta _{k}}{u!} {{u}\atopwithdelims (){v}} \frac{\left( \gamma _{th2}-1 \right) ^{u-v}\gamma _{th2}^{v}}{\overline{\gamma }_{RD}^{u} \overline{\gamma }_{\mathsf {RE}}} \exp \left( -\frac{\gamma _{th2}-1}{\overline{\gamma }_{\mathsf {RD}}}\right) \\&\quad \times\,\varGamma (v+1) \left( \frac{\gamma _{th2}}{\overline{\gamma }_{\mathsf {RD}}} +\frac{1}{\overline{\gamma }_{\mathsf {RE}}} \right) ^{-(v+1)}. \end{aligned}$$
(68)

By substituting (49) and (68) into (67), \(P_{SO1}^{BF}\) is obtained as

$$\begin{aligned}P_{SO1}^{BF} &=\phi _{K}(\gamma _{th1}) \left\{ \delta (K) + U(K-1) \left[ 1- \sum _{k=0}^{K-1}\sum _{u=0}^{K-1-k} \sum _{v=0}^{u} \frac{\beta _{k}}{u!} {{u}\atopwithdelims (){v}} \gamma _{th2}^{v} \right. \right. \\&\quad \times\,\left. \left. \frac{\left( \gamma _{th2}-1 \right) ^{u-v}}{\overline{\gamma }_{RD}^{u}\overline{\gamma }_{\mathsf {RE}}} \exp \left( -\frac{\gamma _{th2}-1}{\overline{\gamma }_{\mathsf {RD}}}\right) \varGamma (v+1) \left( \frac{\gamma _{th2}}{\overline{\gamma }_{\mathsf {RD}}} +\frac{1}{\overline{\gamma }_{\mathsf {RE}}} \right) ^{-(v+1)} \right] \right\} . \end{aligned}$$
(69)

\(P_{SO2}^{BF}\) in (20) should consider the interference from active PUs to the secondary network, i.e., \(\alpha =1\), so \(P_{SO2}^{BF}\) is expressed as

$$\begin{aligned} P_{SO2}^{BF}& = \prod _{k \in {{\mathbb {D}}_{{K_c}}}}\Pr \left( \frac{\gamma _{{\mathsf {SR}}_k}}{1 +\gamma _{{\mathsf {PR}}_{k}}}>\gamma _{th1}\right) \prod _{m \in {\mathbb {\overline{D}}_{K_c}}}\Pr \left( \frac{\gamma _{{\mathsf {SR}}_m}}{1 +\gamma _{{\mathsf {PR}}_{m}}}<\gamma _{th1}\right) \\&\quad \times\,\underbrace{\Pr \left( \left[ \frac{1+Z_{B}}{1+Y_{B}}\right] ^{+}<\gamma _{th2}\right) }_{P_{SOB}^{BF}}, \end{aligned}$$
(70)

where \(Z_{B}=\frac{\gamma _{{\mathsf {R}}{\mathsf {D}}}}{1+\gamma _{{\mathsf {P}}{\mathsf {D}}}}\), \(Y_{B}=\frac{\gamma _{{\mathsf {R}}{\mathsf {E}}}}{1+\gamma _{{\mathsf {P}}{\mathsf {E}}}}\).

When considering \({P_{SOB}^{BF}}\), \({P_{SOB}^{BF}}=1\) for \(K<N\), otherwise, \({P_{SOB}^{BF}}\) is derived as

$$\begin{aligned} {P_{SOB}^{BF}} = \int _{0}^{\infty } F_{{Z_B}}\left( {\gamma _{th2}(1+y)-1}\right)\,f_{{Y_B}}\left( {y}\right) dy. \end{aligned}$$
(71)

With the aid of (33) and (34), \(F_{{Z_B}}\left( {z}\right) \) and \(F_{{Y_B}}\left( {y}\right) \) are derived as follows:

$$\begin{aligned} F_{{Z_B}}\left( {z}\right)& = 1- \sum _{k=0}^{K-1}\sum _{u=0}^{K-1-k} \sum _{v=0}^{u} \frac{\beta _{k}\varGamma (v+1)\overline{\gamma }_{{{\mathsf {P}} {\mathsf {D}}}}^{v}z^{u}}{u!\overline{\gamma }_{RD}^{u}} {u\atopwithdelims (){v}} \\& \quad \times\,\exp \left( -\frac{z}{\overline{\gamma }_{\mathsf {RD}}} \right) \left( \xi _{4a} z +1\right) ^{-(v+1)}, \end{aligned}$$
(72)
$$\begin{aligned} F_{{Y_B}}\left( {y}\right)& = \int _{0}^{\infty }F_{{\gamma _{{\mathsf {R}}{\mathsf {E}}}}}\left( {(1+x)y}\right)\,f_{{\gamma _{{\mathsf {P}}{\mathsf {E}}}}}\left( {x}\right) dx \\& = 1- \exp \left( -\frac{y}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}} \right) \frac{1}{\xi _{2b} y+1}. \end{aligned}$$
(73)

By differentiating (73), the \(f_{{Y_B}}\left( {y}\right) \) is obtained as

$$\begin{aligned}&f_{{Y_B}}\left( {y}\right) = \exp \left( -\frac{y}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}} \right) \left( \frac{1}{{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}}(\xi _{2b} y+1)} +\frac{\xi _{2b}}{(\xi _{2b} y+1)^{2}} \right) . \end{aligned}$$
(74)

By substituting (72) and (74) into (71), \({P_{SOB}^{BF}}\) is derived as

$$\begin{aligned}{P_{SOB}^{BF}} &= 1- \int _{0}^{\infty } \sum _{k=0}^{K-1}\sum _{u=0}^{K-1-k} \sum _{v=0}^{u} \frac{\beta _{k}\varGamma (v+1)\overline{\gamma }_{{{\mathsf {P}}{\mathsf {D}}}}^{v}}{u! \overline{\gamma }_{RD}^{u}} {u\atopwithdelims (){v}} [\gamma _{th2}(1 +y)-1]^{u} \\&\quad \times \,\left[ \xi _{4a}(\gamma _{th2}(1 + y)-1) +1\right] ^{-(v+1)} \exp \left( -\frac{\gamma _{th2}(1 + y)-1}{\overline{\gamma }_{\mathsf {RD}}} -\frac{y}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}} \right) \\&\quad \times \, \left( \frac{1}{{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}}(\xi _{2b} y+1)} +\frac{\xi _{2b}}{(\xi _{2b} y+1)^{2}} \right) dy \\&= 1- \sum _{k=0}^{K-1}\sum _{u=0}^{K-1-k} \sum _{v=0}^{u} \sum _{t=0}^{u} \frac{\beta _{k}\varGamma (v+1)\overline{\gamma }_{{{\mathsf {P}}{\mathsf {D}}}}^{v}}{u! \overline{\gamma }_{RD}^{u}} {u\atopwithdelims (){v}} {u\atopwithdelims (){t}} \gamma _{th2}^{t} [\gamma _{th2}-1]^{u-t} \varGamma (t+1) \\&\quad \times \, \left( \frac{\xi _{4c}}{\xi _{4a}\gamma _{th2}}\right) ^{v+1} \left[ \frac{1}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}} \varPhi _{2}\left( t+1,1,v+1;t+2;\xi _{2b},\xi _{4c},\frac{\gamma _{th2}}{ \overline{\gamma }_{\mathsf {RD}}} +\frac{1}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}} \right) \right. \\&\quad +\,\,\left. \xi _{2b} \varPhi _{2}\left( t+1,2,v+1;t+2;\xi _{2b},\xi _{4c}, \frac{\gamma _{th2}}{\overline{\gamma }_{\mathsf {RD}}} +\frac{1}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}} \right) \right] \exp \left( -\frac{\gamma _{th2}-1}{\overline{\gamma }_{\mathsf {RD}}} \right) . \end{aligned}$$
(75)

By substituting (53), (54), (75) into (70), \(P_{SO2}^{BF}\) is obtained

$$\begin{aligned}P_{SO2}^{BF} &= \eta _{K}(\gamma _{th1}) \left\{ \delta (K) + U(K-1) \right. \\&\quad \times \left\{ 1- \sum _{k=0}^{K-1}\sum _{u=0}^{K-1-k} \sum _{v=0}^{u} \sum _{t=0}^{u} \frac{\beta _{k}\varGamma (v+1)\overline{\gamma }_{{{\mathsf {P}} {\mathsf {D}}}}^{v}}{u!\overline{\gamma }_{RD}^{u}} {u\atopwithdelims (){v}} {u\atopwithdelims (){t}} \gamma _{th2}^{t} \right. \\&\quad \times (\gamma _{th2}-1)^{u-t} \left( \frac{\xi _{4c}}{\xi _{4a}\gamma _{th2}}\right) ^{v+1} \exp \left( -\frac{\gamma _{th2}-1}{\overline{\gamma }_{\mathsf {RD}}} \right) \varGamma (t+1) \\&\quad \times \left[ \frac{1}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}} \varPhi _{2}\left( t+1,1,v+1;t+2;\xi _{2b},\xi _{4c},\frac{\gamma _{th2}}{\overline{\gamma }_{\mathsf {RD}}} +\frac{1}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}} \right) \right. \\&\quad +\left. \left. \left. \xi _{2b} \varPhi _{2}\left( t+1,2,v+1;t+2;\xi _{2b},\xi _{4c},\frac{\gamma _{th2}}{\overline{\gamma }_{\mathsf {RD}}} +\frac{1}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}} \right) \right] \right\} \right\} . \end{aligned}$$
(76)

Finally, substituting (23), (24), (69), (76) into (20), the secrecy outage probability \(P_{sout}^{BF}\) is obtained as (35).

Appendix 4: Proof of Theorem 3

We denote \(P_{O1}\) and \(P_{O2}\) in (38) as \(P_{NO1}\) and \(P_{NO2}\) respectively.

Furtherly, based on (2), (29) and (49), \(P_{NO1}\) for \(|{\mathbb {D}}_{{K_c}}|\) is expressed as

$$\begin{aligned}P_{NO1} &= \prod _{k \in {{\mathbb {D}}_{{K_c}}}}\Pr (\gamma _{{\mathsf {SR}}_k}>\gamma _{th1}) \prod _{m \in {\overline{\mathbb {D}}_{K_c}}}\Pr (\gamma _{{\mathsf {SR}}_m}<\gamma _{th1}) \Pr (\gamma _{{\mathsf {R}}_{N}{\mathsf {D}}}<\gamma _{th1}) \\& =\phi _{K}(\gamma _{th1}) \left\{ U(N-K) + \left\{ \sum _{t=0}^{K-N} \frac{\theta _{t}}{B_{t}} \left[ 1-\exp \left( -\frac{B_{t}x}{A_{t}\overline{\gamma }_{\mathsf {RD}}}\right) \right] \right\} U(K-N) \right\} . \end{aligned}$$
(77)

\(P_{NO2}\) is different from \(P_{NO1}\), and the interference from active PUs to the secondary network is considered, i.e., \(\alpha =1\). Based on (54) and (56), \(P_{NO2}\) is expressed as

$$\begin{aligned} P_{NO2}& = \prod _{k \in {{\mathbb {D}}_{{K_c}}}}\Pr \left( \frac{\gamma _{{\mathsf {SR}}_k}}{1 +\gamma _{{\mathsf {PR}}_{k}}}>\gamma _{th1}\right) \prod _{m \in {\overline{\mathbb {D}}_{K_c}}}\Pr \left( \frac{\gamma _{{\mathsf {SR}}_m}}{1 +\gamma _{{\mathsf {PR}}_{m}}}<\gamma _{th1}\right) \\&\quad \times \,\Pr \left( \frac{\gamma _{{\mathsf {R}}_{N}{\mathsf {D}}}}{1 +\gamma _{{\mathsf {P}}{\mathsf {D}}}}<\gamma _{th1}\right) \\&= \eta _{K}(\gamma _{th1}) \left\{ U(N-K) + \sum _{t=0}^{K-N} \frac{\theta _{t}}{B_{t}} U(K-N) \right. \\&\quad \times \,\left[ 1- \frac{A_{t}\overline{\gamma }_{{\mathsf {R}}{\mathsf {D}}}}{\gamma _{th1}B_{t} \overline{\gamma }_{{\mathsf {P}}{\mathsf {D}}}+A_{t}\overline{\gamma }_{{\mathsf {R}}{\mathsf {D}}}} \left. \exp \left( -\frac{B_{t}\gamma _{th1}}{A_{t}\overline{\gamma }_{\mathsf {RD}}}\right) \right] \right\} . \end{aligned}$$
(78)

Finally, substituting (23), (24), (77), (78), into (38), the connection outage probability \(P_{out}^{N}\) is obtained as (44).

Appendix 5: Proof of Theorem 4

According to (41), we denote \(P_{I1}\) and \(P_{I2}\) as \(P_{NI1}\) and \(P_{NI2}\) respectively.

Based on (30) and (49), \(P_{NI1}\) can be obtained as

$$\begin{aligned}P_{NI1} &= \prod _{k \in {{\mathbb {D}}_{{K_c}}}}\Pr (\gamma _{{\mathsf {SR}}_k}>\gamma _{th1}) \prod _{m \in {\overline{\mathbb {D}}_{{K_c}}}}\Pr (\gamma _{{\mathsf {SR}}_m}<\gamma _{th1}) \Pr (\gamma _{{\mathsf {R}}_{N}{\mathsf {E}}}>\gamma _{th1}) \\&=\exp \left( -\frac{Kx}{\overline{\gamma }_{{\mathsf {SR}}}}\right) \left[ 1-\exp \left( -\frac{x}{\overline{\gamma }_{{\mathsf {SR}}}}\right) \right] ^{M-K} \left[ \exp \left( -\frac{\gamma _{th1}}{\overline{\gamma }_{{\mathsf {R}}_{N}{\mathsf {E}}}} \right) \right] U(K-N), \end{aligned}$$
(79)

where \(\Pr \left( \gamma _{{\mathsf {R}}_{N}{\mathsf {E}}}>\gamma _{th1}\right) =0\) when \(K<N\).

\(P_{NI2}\) will also consider the interference from PUs to the secondary network, i.e., \(\alpha =1\). Based on (53), (54) and (57), \(P_{NI2}\) is obtained as

$$\begin{aligned} P_{NI2}& = \prod _{k \in {{\mathbb {D}}_{{K_c}}}}\Pr \left( \frac{\gamma _{{\mathsf {SR}}_k}}{1 +\gamma _{{\mathsf {PR}}_{k}}}>\gamma _{th1}\right) \prod _{m \in {\overline{\mathbb {D}}_{K_c}}}\Pr \left( \frac{\gamma _{{\mathsf {SR}}_m}}{1 +\gamma _{{\mathsf {PR}}_{m}}}<\gamma _{th1}\right) \\&\quad \times \,\Pr \left( \frac{\gamma _{{\mathsf {R}}_{N}{\mathsf {E}}}}{1+\gamma _{{\mathsf {P}} {\mathsf {E}}}}>\gamma _{th1}\right) \\&=\eta _{K}(\gamma _{th1}) \exp \left( -\frac{\gamma _{th1}}{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}} \right) \frac{\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}U(K-N)}{\overline{\gamma }_{{{\mathsf {P}}{\mathsf {E}}}}\gamma _{th1} +\overline{\gamma }_{{{\mathsf {R}}{\mathsf {E}}}}}, \end{aligned}$$
(80)

where \(\Pr \left( \frac{\gamma _{{\mathsf {R}}_{N}{\mathsf {E}}}}{1+\gamma _{{\mathsf {P}}{\mathsf {E}}}}>\gamma _{th1}\right) =0\) when \(K<N\).

Finally, substituting (23), (24), (79), (80) into (41), the probability \(P_{int}^{N}\) is obtained as (45).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, E., Ha, DB. et al. Secure Cognitive Relay Network: Joint the Impact of Imperfect Spectrum Sensing and Outdated Feedback. Wireless Pers Commun 87, 165–192 (2016). https://doi.org/10.1007/s11277-015-3037-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-3037-3

Keywords

Navigation