Skip to main content
Log in

Revisiting the RIP of Real and Complex Gaussian Sensing Matrices Through RIV Framework

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we aim to revisit the restricted isometry property of real and complex Gaussian sensing matrices. We do this reconsideration via the recently introduced restricted isometry random variable (RIV) framework for the real Gaussian sensing matrices. We first generalize the RIV framework to the complex settings and illustrate that the restricted isometry constants (RICs) of complex Gaussian sensing matrices are smaller than their real-valued counterpart. The reasons behind the better RIC nature of complex sensing matrices over their real-valued counterpart are delineated. We also demonstrate via critical functions, upper bounds on the RICs, that complex Gaussian matrices with prescribed RICs exist for larger number of problem sizes than the real Gaussian matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Please note that the inner minimiztion is over uncountably infinite number of Chi-square random variables. The RIV approach approximates it to a single random variable. The sufficiency of this approximation is yet to be proved.

References

  1. Candes, E. J., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203–4215.

    Article  MathSciNet  MATH  Google Scholar 

  2. Lin, J., Li, S., & Shen, Y. (2013). New bounds for restricted isometry constants with coherent tight frames. IEEE Transactions on Signal Processing, 61(3), 611–620.

    Article  MathSciNet  Google Scholar 

  3. Candes, E. J. (2008). The restricted isometry property and its implications for compressed sensing. C. R. Acad. Sci. Paris, Ser. I, 346(9–10), 589–592.

  4. Kekatos, V., & Giannakis, G. B. (2011). Sparse volterra and polynomial regression models: Recoverability and estimation. IEEE Transactions on Signal Processing, 59(12), 5907–5920.

    Article  MathSciNet  Google Scholar 

  5. Wang, J., & Shim, B. (2012). On the recovery limit of sparse signals using orthogonal matching pursuit. IEEE Transactions on Signal Processing, 60(9), 4973–4976.

    Article  MathSciNet  Google Scholar 

  6. Song, C. B., Xia, S. T., & Liu, X. J. (2014). Improved analysis for subspace pursuit algorithm in terms of restricted isometry constant. IEEE Signal Processing Letters, 21(11), 1365–1369.

    Article  Google Scholar 

  7. Bourgain, J., Dilworth, S., Ford, K., Konyagin, S., & Kutzarova, D. (2011). Explicit constructions of RIP matrices and related problems. Duke Mathematical Journal, 159(1), 145–185.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bandeira, A. S., Fickus, M., Mixon, D. G., & Wong, P. (2013). The road to deterministic matrices with the restricted isometry property. Journal of Fourier Analysis and Applications, 19, 1123–1149.

    Article  MathSciNet  MATH  Google Scholar 

  9. Foucart, S., & Lai, M. J. (2009). Sparsest solutions of underdetermined linear systems via \(l_q\) minimization for \(0 <q \le 1\). Applied and Computational Harmonic Analysis, 26(3), 395–407.

    Article  MathSciNet  MATH  Google Scholar 

  10. Blanchard, J. D., Cartis, C., & Tanner, J. (2011). Compressed sensing: How sharp is the restricted isometry property? SIAM Review, 53(1), 105–125.

    Article  MathSciNet  MATH  Google Scholar 

  11. Blanchard, J. D., Cartis, C., Tanner, J., & Thompson, A. (2011). Phase transitions for greedy sparse approximation algorithms. Applied and Computational Harmonic Analysis, 30(2), 188–203.

    Article  MathSciNet  MATH  Google Scholar 

  12. Bah, B., & Tanner, J. (2010). Improved bounds on restricted isometry constants for gaussian matrices. SIAM Journal on Matrix Analysis and Applications, 31(5), 2882–2898.

    Article  MathSciNet  MATH  Google Scholar 

  13. Baraniuk, R., Davenport, M., DeVore, R., & Wakin, M. (2008). A simple proof of the restricted isometry property for random matrices. Constructive Approximation, 28, 253–263.

    Article  MathSciNet  MATH  Google Scholar 

  14. Oliver, J., & Lee, H. N.: Restricted isometry random variables: Probability distributions, RIC prediction and phase transition analysis for Gaussian encoders. Submitted to IEEE Transactions on Signal Processing ([Online]. Available: http://arxiv.org/abs/1410.1956).

  15. Arnold, B. C., Balakrishnan, N., & Nagaraja, H. N. (2008). A first course in order statistics. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  16. Castillo, E., Hadi, A. S., Balakrishnan, N., & Sarabia, J. M. (2004). Extreme value and related models with applications in engineering and science. New York: Wiley.

    Google Scholar 

  17. Embrechts, P., Kluppelberg, C., & Mikosch, T. (2004). Modeling extremal events for insurance and finance. New York: Springer.

    Google Scholar 

  18. Cartis, C., & Thompson, A. (2015). A new and improved quantitative recovery analysis for iterative hard thresholding algorithms in compressed sensing. IEEE Transactions on Information Theory, 61(4), 2019–2042.

    Article  MathSciNet  Google Scholar 

  19. Jang, H. C., Yoon, C. H., Chung, E. H., Choi, W. S., & Lee, H. N. (2014). Speckle suppression via sparse representation for wide-field imaging through turbid media. Optics Express, 22(13), 16619–16628.

    Article  Google Scholar 

  20. Yang, Z., Zhang, C., & Xie, L. (2012). On phase transition of compressed sensing in the complex domain. IEEE Signal Processing Letters, 19(1), 47–50.

    Article  Google Scholar 

  21. Maleki, A., Anitori, L., Yang, Z., & Baraniuk, R. G. (2013). Asymptotic analysis of complex LASSO via complex approximate message passing (CAMP). IEEE Transactions on Information Theory, 59(7), 4290–4308.

    Article  MathSciNet  Google Scholar 

  22. Xu, K., Wang, J., & Shim, B. (2014). The RIP of random matrices with complex gaussian entries. In Future information technology, Lecture Notes in Electrical Engineerings, vol. 276, pp. 13–19.

  23. Gupta, A. K., & Nagar, D. K. (1999). Matrix variate distributions. Florida: Chapman and Hall.

    Google Scholar 

  24. Gradshteyn, I., & Ryzhik, I. M. (1994). Table of integrals, series, and products. San Diego: Academics Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver James.

Appendix: Distributions of Chi-Square Random Variable

Appendix: Distributions of Chi-Square Random Variable

The PDF of a central Chi-square random variable with 2M degrees of freedom with \(\sigma ^2 =\frac{1}{2M}\) is

$$\begin{aligned} p_C(x)=\left\{ \begin{array}{ll} \frac{M^M}{\varGamma (M)} x^{M-1} e^{-Mx} &{} x \ge 0 \\ 0 &{} {\mathrm{otherwise}} \end{array} \right. , \end{aligned}$$
(19)

and its corresponding CDF is given by

$$\begin{aligned} F_C(x)= \frac{\gamma \left( M,Mx\right) }{\varGamma (M)}. \end{aligned}$$
(20)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James, O. Revisiting the RIP of Real and Complex Gaussian Sensing Matrices Through RIV Framework. Wireless Pers Commun 87, 513–526 (2016). https://doi.org/10.1007/s11277-015-3083-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-3083-x

Keywords

Navigation