Skip to main content
Log in

Renewal Process of Information Propagation in Delay Tolerant VANETs

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The Information propagation process is one the main challenges in delay tolerant networks especially in vehicular ad hoc networks (VANETs). A cycle of information propagation in a time-varying vehicular speed situation starts with physical movement of the vehicles as a catch-up process and ends with multihop transmission through connected vehicles as a forwarding process. Based on these two alternating processes information propagation cyclically renews. In the literature of VANET information propagation speed (IPS) is formulated based on one propagation cycle. This motivated us to develop more a realistic analytical model which investigates the average IPS based on the number of renewal cycles that a piece of information needs to be delivered. Using this renewal process, unlike traditional models, the expected length and expected duration of renewal cycles are formulated mathematically and subsequent closed-form equations are proposed for average IPS. The accuracy of the proposed model is confirmed using simulation. The concluded results provide helpful insights towards designing new applications on VANETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kumar, R., & Mayank, D. (2014). Mobility models and their affect on data aggregation and dissemination in vehicular networks. Wireless Personal Communications, 79(3), 2237–2269.

    Article  Google Scholar 

  2. Blum, J. J., Eskandarian, A., & Hoffman, L. (2004). Challenges of intervehicle ad hoc networks. IEEE Transaction Intelligent Transportation System, 5(4), 347–351.

    Article  Google Scholar 

  3. Cheng, L., Henty, B. E., Stancil, D. D., Bai, F., & Mudalige, P. (2007). Mobile vehicle to vehicle narrowband channel measurement and characterization of the 5.9 GHz Dedicated Short Range Communication DSRC frequency band. IEEE Journal on Selected Areas in Communications, 25(8), 1501–1516.

    Article  Google Scholar 

  4. Zeadally, S., Hunt, R., Chen, Y. S., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommunication System, 50(4), 217–241.

    Article  Google Scholar 

  5. Kakkasageri, M. S., Manvi, S. S., & Pitt, J. (2013). Cognitive agent based critical information gathering and dissemination in vehicular ad hoc networks. Wireless Personal Communications, 69(4), 1107–1129.

    Article  Google Scholar 

  6. Kurmis, M., Andziulis, A., Dzemydiene, D., Jakovlev, S., Voznak, M., & Gricius, G. (2015). Cooperative context data acquisition and dissemination for situation identification in vehicular communication networks. Wireless Personal Communications, Published online.

  7. Xu, Q., Sengupta, R., Mak, T., & Ko, J. (2004). Vehicle-to-vehicle safety messaging in DSRC. In Proceedings of 1st ACM international workshop on vehicular ad hoc network (pp. 19–28).

  8. Zhang, Z., Mao, G., & Anderson, B. D. O. (2011). On the information propagation process in mobile vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 60(5), 2314–2325.

    Article  Google Scholar 

  9. Zhang, Z. (2006). Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: Overview and challenges. IEEE Communications Surveys & Tutorials, 8(1), 24–37.

    Article  Google Scholar 

  10. Khiadani, N. H., Safavi Hemami, S. M., & Hendessi, F. (2014). Analysis of acceleration effect in data dissemination in vehicular networks using rateless codes. Wireless Personal Communications, 77(2), 991–1006.

    Article  Google Scholar 

  11. Agarwal, A., Starobinski, D., & Little, T. D. C. (2012). Phase transition of message propagation speed in delay-tolerant vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 13(1), 249–263.

    Article  Google Scholar 

  12. Zhang, Z., Mao, G., & Anderson, B. D. O. (2012). On the information propagation process in multi-lane vehicular ad hoc networks. In Proceedings of the IEEE International Conference on Communications (ICC) (pp. 708–712).

  13. Wu, H., Fujimoto, R. M., Riley, G. F., & Hunter, M. (2009). Spatial propagation of information in vehicular networks. IEEE Transaction on Vehicular Technology, 58(1), 420–431.

    Article  Google Scholar 

  14. Yousefi, S., Altman, E., El-Azouzi, R., & Fathy, M. (2008). Analytical model for connectivity in vehicular ad hoc networks. IEEE Transaction on Vehicular Technology, 57(6), 3341–3356.

    Article  Google Scholar 

  15. Agarwal, A., Starobinski, D.,& Little, T. D. (2008). Analytical model for message propagation in delay tolerant vehicular ad hoc networks. In Proceedings of the IEEE vehicular technololgy conference (pp. 3067–3071).

  16. Agarwal A., & Little, T. D. (2009). Impact of asymmetric traffic densities on delay tolerant vehicular ad hoc networks. In Proceedings of the IEEE vehicular networking conference (VNC) (pp. 1–8).

  17. Wu, H., Lee, J., Hunter, M., Fujimoto, R., Guensler, R. L., & Ko, J. (2005). Efficiency of simulated vehicle-to-vehicle message propagation in Atlanta, Georgia, I-75 corridor. Transportation Research Record: Journal of the Transportation Research Board, 1910, 82–89.

    Article  Google Scholar 

  18. Traffic software integrated system—Corridor simulation, (2009), U. S. Department of Transportation.

  19. Baccelli, E., Jacquet, P., Mans, B., & Rodolakis, G. (2011). Information propagation speed in bidirectional vehicular delay tolerant networks. In Proceedings of the IEEE INFOCOM (pp. 436–440).

  20. Baccelli, E., & Jacquety, P. (2013). Multi-lane vehicle-to-vehicle networks with time-varying radio ranges: Information propagation speed properties. In Proceedings of the IEEE international symposium on information theory (ISIT) (pp. 809–813).

  21. Baccelli, E., Jacquet, P., Mans, B., & Rodolakis, G. (2012). Highway vehicular delay tolerant networks: Information propagation speed properties. IEEE Transaction on Information Theory, 58(3), 1743–1756.

    Article  MathSciNet  Google Scholar 

  22. Jacquet, Ph, Mans, B., & Rodolakis, G. (2010). Information propagation speed in mobile and delay tolerant networks. IEEE Transactions on Information Theory, 56(10), 5001–5015.

    Article  MathSciNet  Google Scholar 

  23. Zhang, Z., Mao, G., & Anderson, B.D.O. (2010). On the information propagation speed in mobile vehicular ad hoc networks. In Proceedings of the IEEE global telecommunications conference (GLOBECOM) (p. 1C5).

  24. Ross, S. M. (2011). Introduction to probability models (10th ed.). Amsterdam: Elsevier.

    Google Scholar 

  25. Godehardt, E., & Jaworski, J. (1996). On the connectivity of a random interval graph. Random Structure and Algorithms, 9(1/2), 137–161.

    Article  MathSciNet  MATH  Google Scholar 

  26. Hall, P. (1998). Introduction to the theory of coverage processes. NJ, Wiley: Hoboken.

    Google Scholar 

  27. Li, J, & Chigan, C. (2010). Delay-aware transmission range control for VANETs. In Proceedings of the IEEE global telecommunications conference (GLOBECOM) (pp. 1–6).

  28. Zhang, Z., Mao, G., & Anderson, B. D. O. (2014). Stochastic characterization of information propagation process in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 15(1), 122–135.

    Article  Google Scholar 

  29. Fracchia, R., & Meo, M. (2008). Analysis and design of warning delivery service in intervehicular networks. IEEE Transaction on Mobile Computing, 7(7), 832–845.

    Article  Google Scholar 

  30. Camara, D., Bonnet, C., & Filali, F. (2010). Propagation of public safety warning messages: A delay tolerant network approach. In Proceedings of the IEEE wireless communication network (pp. 1–6).

  31. Zhang. Z. (2013) Vehicular ad hoc networks. http://zijie.net/manet/vanet/.

  32. Neelakantan, P. C., & Babu, A. V. (2013). Connectivity analysis of vehicular ad hoc networks from a physical layer perspective. Wireless Personal Communication, 71(1), 45–70.

    Article  Google Scholar 

  33. IEEE Std. 802.11p Draft Amendment. (2010). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Wireless access in vehicular environments (WAVE).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Zarei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, M., Rahmani, A.M. Renewal Process of Information Propagation in Delay Tolerant VANETs. Wireless Pers Commun 89, 1045–1063 (2016). https://doi.org/10.1007/s11277-016-3304-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3304-y

Keywords

Navigation