Skip to main content
Log in

Analysis and Design of Compact High Gain Microstrip Patch Antenna with Defected Ground Structure for Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Dual band Microstrip-Line-Fed low profile Microstrip Patch Antenna is proposed for wireless applications. A rotated rectangular shaped defect is embedded in the ground plane and fed with a 50-Ω open ended Microstrip-Line. Dual band is achieved at 2.55 and 7.55 GHz. Antenna shows good radiation characteristics with peak gain of 8.1 dBi. Proposed antenna may be used for WiMAX applications with omnidirectional radiation pattern. Theoretical analysis is done for the proposed antenna by equivalent circuit model approach. Further, corners of the rectangular defect are truncated and a defected square ring is inserted inside the truncated-corners-rectangular-defect on the ground plane. 40 % of miniaturization is achieved and antenna starts to respond at 1.55 GHz with better radiation characteristics in both planes. Measured results of fabricated antennas are in good match with theoretical and simulated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Maci, S., & BifJi, G. G. (1997). Dual-frequency patch antennas. IEEE Antennas and Propagation Magazine, 39, 13–20.

    Article  Google Scholar 

  2. Maci, S., Biffi, G. G., Piazzesi, P., & Salvador, C. (1995). Dual-band slot-loaded patch antenna. IEE Proceedings-Microwaves, Antennas and Propagation, 142, 225–232.

    Article  Google Scholar 

  3. Khandelwal, M. K., Kanaujia, B. K., Dwari, S., Kumar, S., & Gautam, A. K. (2015). Analysis and design of dual band compact stacked microstrip patch antenna with defected ground structure for WLAN/WiMax applications. International Journal of Electronics and Communication, 69, 39–47.

    Article  Google Scholar 

  4. Su, S. W. (2010). High-gain dual-loop antennas for MIMO access point in the 2.4/5.2/5.8 GHz bands. IEEE Transactions on Antennas and Propagation, 58, 2412–2419.

    Article  Google Scholar 

  5. Row, J. S., & Chen, S. H. (2006). Wideband monopolar squre-ring patch antenna. IEEE Transactions on Antennas and Propagation, 54, 1335–1339.

    Article  Google Scholar 

  6. Gardelli, R., Cono, G. L., & Albani, M. (2004). A low-cost suspended patch antenna for WLAN access points and point-to point links. IEEE Antennas and Wireless Propagation and Letters, 3, 90–93.

    Article  Google Scholar 

  7. Khandelwal, M. K., Kanaujia, B. K., Dwari, S., Kumar, S., & Gautam, A. K. (2014). Analysis and design of microstrip-line-fed antenna with defected ground structure for Ku band applications. International Journal of Electronics and Communication, 68, 951–957.

    Article  Google Scholar 

  8. Jan, J. Y., & Su, J. W. (2005). Bandwidth enhancement of a printed wide-slot antenna with a rotated slot. IEEE Transactions on Antennas and Propagation, 53, 2111–2114.

    Article  Google Scholar 

  9. Kanaujia, B. K., & Vishvakarma, B. R. (2004). Analysis of Gunn integrated annular ring microstrip antenna. IEEE Transactions on Antennas and Propagation, 52, 88–97.

    Article  Google Scholar 

  10. Gautam, A. K., Yadav, S., & Kanaujia, B. K. (2013). A CPW-fed compact UWB microstrip antenna. IEEE Antennas and Wireless Propagation and Letters, 12, 151–154.

    Article  Google Scholar 

  11. Khandelwal, M. K., Kanaujia, B. K., & Gautam, A. K. (2013). Low profile UWB log-periodic dipole antenna for wireless communication with notched band. Microwave and Optical Technology Letters, 55, 2901–2906.

    Article  Google Scholar 

  12. Khandelwal, M. K., Kanaujia, B. K., Dwari, S., Kumar, S., & Gautam, A. K. (2014). Bandwidth enhancement and cross-polarization suppression in ultra-wideband microstrip antenna with defected ground plane. Microwave and Optical Technology Letters, 56, 2141–2146.

    Article  Google Scholar 

  13. Dwari, S., & Sanyal, S. (2006). Compact sharp cutoff wide stopband low-pass filter using defected ground structure and spurline. Microwave and Optical Technology Letters, 48, 1871–1873.

    Article  Google Scholar 

  14. Dwari, S., & Sanyal, S. (2007). Compact wide stopband low-pass filter using rectangular patch compact microstrip resonator cell and defected ground structure. Microwave and Optical Technology Letters, 49, 798–800.

    Article  Google Scholar 

  15. Dwari, S., & Sanyal, S. (2006). Size reduction and harmonic suppression of microstrip branch-line coupler using defected ground structure. Microwave and Optical Technology Letters, 48, 1966–1969.

    Article  Google Scholar 

  16. Dwari, S., & Sanyal, S. (2007). Compact sharp cutoff wide stopband microstrip low-pass filter using complementary split ring resonator. Microwave and Optical Technology Letters, 49, 2865–2867.

    Article  Google Scholar 

  17. Caloz, C., Okabe, H., Iwai, T., & Itoh, T. (2004). A simple and accurate model for microstrip structures with slotted ground plane. IEEE Microwave and Wireless Components Letters, 14, 133–135.

    Article  Google Scholar 

  18. Hong, J. S., & Karyamapudi, B. M. (2005). A general circuit model for defected ground structure in plannar transmission lines. IEEE Microwave and Wireless Components Letters, 15, 706–708.

    Article  Google Scholar 

  19. Ahn, D., Park, J. S., Kim, C. S., Kim, J., Qian, Y., & Itoh, T. (2001). A design of the low-pass filter using the novel microstrip defected ground structure. IEEE Transactions on Microwave Theory and Techniques, 49, 86–93.

    Article  Google Scholar 

  20. High Frequency Structure Simulator (HFSS) Ansoft, ver 14.

  21. Pues, H., & Capelle, A. V. D. (1984). Accurate transmission line model for the rectangular microstrip antenna. IEE Proceedings, 131, 334–340.

    Google Scholar 

  22. Wolf, E. A. (1988). Antenna analysis. Narwood (USA): Artech House.

    Google Scholar 

  23. Garg, R., Bhartia, P., Bahl, I., & Ittipiboon, A. (2001). Microstrip antenna design handbook. Norwood, MA: Artech House.

    Google Scholar 

  24. Collins, R. E. (2001). Foundations of microwave engineering (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  25. Tang, W., Chow, Y. L., & Tsang, K. F. (2004). Different microstrip line discontinuties on a single field-based equivalent circuit model. IEE Proceedings-Microwaves, Antennas and Propagation, 151, 256–262.

    Article  Google Scholar 

  26. Kirschning, M., Jansen, R. H., & Koster, N. H. L. (1981). Accurate model for open end effect of microstrip lines. Electronics Letters, 17, 123–125.

    Article  Google Scholar 

  27. Pucel, R. A., Masse, D. J., & Hartwig, C. P. (1968). Correction to losses in microstrip. IEEE Transactions on Microwave Theory and Techniques, 16, 1064.

    Article  Google Scholar 

  28. Welch, J. D., & Pratt, H. J. (1966). Losses in microstrip transmission systems for integrated microwave circuits. NEREM Record, 18, 100–101.

    Google Scholar 

  29. Schneider, M. V. (1969). Microstrip lines for microwave integrated circuits. Bell System Technical Journal, 48, 1421–1444.

    Article  Google Scholar 

  30. Terman, F. E. (1955). Electronics and radio engineering. New York: McGraw-Hill.

    Google Scholar 

  31. Kumar, S., Kanaujia, B. K., Khandelwal, M. K., & Gautam, A. K. (2013). Stacked dual-band circularly polarized microstrip antenna with small frequency ratio. Microwave and Optical Technology Letters, 56, 1933–1937.

    Article  Google Scholar 

  32. Kumar, S., Kanaujia, B. K., Khandelwal, M. K., & Gautam, A. K. (2015). Single-feed circularly polarized stacked patch antenna with small-frequency ratio for dual-band wireless applications. International Journal of Microwave and Wireless Technologies,. doi:10.1017/S1759078715000720.

    Google Scholar 

  33. Xue, J. L. Q., Wong, H., Lai, H. W., & Long, Y. (2013). Design and analysis of a low-profile and broadband microstrip monopolar patch antenna. IEEE Transactions on Antennas and Propagation, 61, 11–18.

    Article  Google Scholar 

  34. Wu, T., Su, H., Gan, L., Chen, H., Huang, J., & Zhang, H. (2013). Compact and broadband Micro strip stacked Patch Antenna with Circular polarization for 2.45 GHz Mobile RFID Reader. IEEE Antenna and Wireless Propagation Letters, 12, 623–626.

    Article  Google Scholar 

  35. Ha, J., Kwon, K., Lee, Y., & Choi, J. (2012). Hybrid mode wideband patch antenna loaded with a planar meta-material unit cell. IEEE Transactions on Antennas and Propagation, 60, 1143–1147.

    Article  Google Scholar 

  36. Chang, N., & Lin, J. M. (2011). Enhances return- loss and flat-gain bandwidth for micro strip patch antenna. IEEE Transactions on Antennas and Propagation, 59, 4322–4325.

    Article  Google Scholar 

  37. Kanaujia, B. K., Kumar, S., Khandelwal, M. K., & Gautam, A. K. (2015). Single feed L-slot microstrip antenna for circular polarization. Wireless Personal Communications,. doi:10.1007/s11277-015-2889-x.

    Google Scholar 

  38. Kumar, S., Kanaujia, B. K., Sharma, A., Khandelwal, M. K., & Gautam, A. K. (2014). Single-feed cross-slot loaded compact circularly polarized microstrip antenna for indoor WLAN applications. Microwave and Optical Technology Letters, 56, 1313–1317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binod Kumar Kanaujia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanaujia, B.K., Khandelwal, M.K., Dwari, S. et al. Analysis and Design of Compact High Gain Microstrip Patch Antenna with Defected Ground Structure for Wireless Applications. Wireless Pers Commun 91, 661–678 (2016). https://doi.org/10.1007/s11277-016-3486-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3486-3

Keywords

Navigation