Skip to main content
Log in

A Blind Recognition Algorithm for Real Orthogonal STBC MC-CDMA Underdetermined Systems Based on LPCA and SCA

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper proposes a blind recognition algorithm for real orthogonal space–time block code multi-carrier code division multiple access (OSTBC MC-CDMA) underdetermined systems based on Laplacian potential clustering algorithm (LPCA) and sparse component analysis. In our work, the received signal first has been constructed to satisfy the instantaneous underdetermined model, where the mixing matrix (virtual channel matrix) includes the information of space–time block code. The virtual channel matrix is then can be separated by using the LPCA. We show that, for OSTBC, the correlation matrix of virtual channel matrix is a diagonal matrix, while with non-OSTBC (NOSTBC) signal, such correlation matrix of virtual channel matrix was not. According to this property, two characteristic parameters of correlation matrix of virtual channel matrix are extracted, such as sparsity and energy ratio of non-main and main diagonal elements. In recognition process, the energy ratio will be used in pre-decision step, thus it avoids the influence of noise and making sure that the correlation matrix of virtual channel matrix is a diagonal matrix for OSTBC. The last decision will be done through comparing sparsity parameter with the number of transmitted symbols, where the sparsity parameter of OSTBC will be equal the number of transmitted symbols and the such parameter of NOSTBC will not. Simulation results demonstrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jafarkhani, H. (2013). Space time coding. Theory and practice. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  2. Cho, Y. S., Kim, J., Yang, W. Y., et al. (2013). MIMO-OFDM wireless communications with MATLAB. Singapore: Wiley.

    Google Scholar 

  3. Adachi, F., Gang, G., Rakaoka, S., et al. (2005). Broadband CDMA technique. IEEE Wireless Communications, 12, 8–18.

    Article  Google Scholar 

  4. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45, 1456–1467.

    Article  MathSciNet  MATH  Google Scholar 

  5. Young, M. D., Health, R., & Evans, B. L. (2008). Using higher order cyclostationarity to indentify space-time block codes. In IEEE global teleommunications conference (pp. 3370–3374). New Orleans, Louisiana, USA.

  6. Shi, M., Bar-ness, Y., & Su, W. (2007). STC and BLAST MIMO modulation recognition. In IEEE global teleommunications conference (pp. 3334–3339). Washington, DC, USA.

  7. Choqueuse, V., Yao, K., Collin, L., et al. (2008). Hierarchical space-time block code recognition using correlation matrices. IEEE Transactions on Wireless Communication, 7, 3526–3534.

    Article  Google Scholar 

  8. Choqueuse, V., Yao, K., Collin, L., et al. (2008). Blind recognition of linear space-time block codes. In ICASSP’2008, pp. 2833–2836. Las Vegas, Nevada, USA.

  9. Choqueuse, V., Yao, K., Collin, L., et al. (2010). Blind recognition of linear space-time block codes: A likelihood-based approach. IEEE Transactions on Signal Processing, 58, 1290–1299.

    Article  MathSciNet  Google Scholar 

  10. Gribonval, R., & Lesage, S. (2006). A survey of sparse component analysis for blind source separation: Principles, perspectives, and new challenges. In Proceedings ESANN’06 (pp. 323–330).

  11. Bofill, P., & Zibulevsky, M. (2001). Underdetermined blind source separation using sparse representations. Signal Processing, 81, 2353–2362.

    Article  MATH  Google Scholar 

  12. Davies, M., & Mitianoudis, N. (2004). Simple mixture model for sparse overcomplete ICA. IEE Proceedings-Vision, Image and Signal Processing, 151, 35–43.

    Article  Google Scholar 

  13. Babaie-Zadeh, M., Jutten, C., & Mansour, A. (2006). Sparse ICA via cluster-wise PCA. Neural computing, 69, 1458–1466.

    Google Scholar 

  14. Li, Y. Q., Amari, S., Cichocki, A., et al. (2006). Underdetermined blind source separation based on sparse representation. IEEE Transactions on Signal Processing, 54, 423–437.

    Article  Google Scholar 

  15. Mitianoudis, N., & Stathaki, T. (2005). Overcomplete source separation using laplacian mixture models. IEEE Signal Processing Letters, 12, 277–280.

    Article  Google Scholar 

  16. Prieto, A., Prieto, B., Puntonet, C. G., et al. (1999). Geometric separation of linear mixtures of sources: Application to speech signals. In Proceedings of ICA’99, pp. 295–300.

  17. Theis, F. J., Lang, W. E., & Puntonet, C. G. (2004). A geometric algorithm for overcomplete linear ICA. Neural computing, 56, 381–398.

    Google Scholar 

  18. Zhang, W., Liu, J., Sun, J., et al. (2007). A new two-stage approach to underdetermined blind source separation using sparse representation. In Proceedings of ICASSP’07 (pp. 953–956).

  19. Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 4–37.

    Article  Google Scholar 

  20. Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. New York: Wiley.

    Book  MATH  Google Scholar 

  21. Mclachlan, G. J., & Krishnan, T. (1987). The em algorithm and extensions. Hoboken, NJ: Wiley.

    MATH  Google Scholar 

  22. Lippmann, R. P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 42, 4–22.

    Article  Google Scholar 

  23. Tsao, E. C. K., Bezdek, J. C., & Pal, N. R. (1994). Fuzzy Kohonen clustering net works. Patten Recognition, 27, 757–764.

    Article  Google Scholar 

  24. Bezdek, J. C. (1981). Patten recognition with fuzzy objective function algorithm. New York: Plenum Press.

    Book  Google Scholar 

  25. Frigui, H., & Krishnapuram, R. (1999). A robust competitive clustering algorithm with application in computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 450–465.

    Article  Google Scholar 

  26. Stewart, C. V. (1995). MINPRAN: A new robust estimator for computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 925–938.

    Article  Google Scholar 

  27. Dave, R. N., & Krishnapuram, R. (1997). Robust clustering methods: A unified view. IEEE Transactions on Fuzzy Systems, 5, 270–293.

    Article  Google Scholar 

  28. Krishnapuram, R., Frigui, H., & Nsraoui, O. (1995). Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. IEEE Transactions on Fuzzy Systems, 3, 29–60.

    Article  Google Scholar 

  29. Wu, K. L., & Yang, M. S. (2002). Alternative c-means clustering algorithms. Patten Recognition, 35, 2267–2278.

    Article  MATH  Google Scholar 

  30. Pal, N. R., & Bezdek, J. C. (1995). On cluster validity for c-means model. IEEE Transactions on Fuzzy Systems, 3, 370–379.

    Article  Google Scholar 

  31. Gustafson, E. E., & Kessel, W. C. (1979). Fuzzy clustering with a fuzzy matrix. In Proceedings of IEEE conference on design and control (pp. 761–766). San Diego, CA.

  32. Gath, I., & Geva, A. B. (1989). Unsupervised optimal fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 773–781.

    Article  MATH  Google Scholar 

  33. Stefan, K. (1998). Multi carrier CDMA mobile radio systems-analysis and optimization of detection, decoding and channel estimation. Series 10. Düsseldorf: VDI-Verlag, Fortschritt-Berichte VDL.

  34. Ju, L., Antonio, I. P., & Miguel, A. L. (2003). Blind separation of OSTBC signals using ICA neural networks. In IEEE International Symposium on Signal Processing and Information Technology, pp. 502–505. Darmstadt, Germany.

  35. Wax, M., & Kailath, T. (1985). Detection of signals by Information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33, 387–392.

    Article  MathSciNet  Google Scholar 

  36. Zibulevsky, M., & Pearlmutter, B. A. (2001). Blind source separation by sparse decomposition in a signal dictionary. Neural Computer, 13, 863–882.

    Article  MATH  Google Scholar 

  37. Yager, R. R., & Filev, D. P. (1994). Approximate clustering via the mountain method. IEEE Transactions on Systems, Man and Cybernetics, 24, 1279–1284.

    Article  Google Scholar 

  38. Mitianoudi, N. S., & Stathaki, T. (2007). Batch and online underdetermined source separation using Laplacian mixture models. IEEE Transactions on Audio, Speech and Language Processing, 15, 1818–1832.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 61371164, 61275099, 61102131), the Project of Key Laboratory of Signal and Information Processing of Chongqing (No. CSTC2009CA2003), the Chongqing Distinguished Youth Foundation (No. CSTC2011jjjq40002), the Natural Science Foundation of Chongqing (No. CSTC2012JJA40008), the Research Project of Chongqing Educational Commission (KJ120525, KJ130524) and Graduate Research and Innovation Projects of Chongqing (No. CYS14140). The authors are grateful to the Chongqing University of Posts and Telecommunication and Friedrich Alexander University Erlangen Nurnberg for providing the facility in carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bui Quang Chung.

Appendices

Appendix 1

1.1 Correlation Comparison Algorithm

This section analyzes the effect of parameter of \(\gamma\) and proposes a tool to acquire a good estimating. We have to note that that \(\gamma\) can determine the location of peaks in the objective function \(J\left( {\mathbf{z}} \right)\). A good estimation of \(\gamma\) will induce a good clustering result. Thus, \(\beta\) is not longer sensitive to the result.

As maximizing the total similarity measure \(J\left( {\mathbf{z}} \right)\) is a way to find the peaks of the objective function \(J\left( {\mathbf{z}} \right)\). The parameter \(\gamma\) can determine the location of the peaks of \(J\left( {\mathbf{z}} \right)\). Let \(\tilde{J}\left( {{\mathbf{y}}_{j} } \right)\) be the total similarity of the data point \({\mathbf{y}}_{j}\) to all data points with

$$\tilde{J}\left( {{\mathbf{y}}_{j} } \right) = \sum\limits_{i = 1}^{m} {\left( {\exp - \frac{{\left| {{\mathbf{y}}_{i} - {\mathbf{y}}_{j} } \right|}}{\beta }} \right)^{\gamma } } \quad j = 1,2, \ldots ,m$$
(25)

This function can be seen closely related to the density shape of the data points in the neighborhood of \({\mathbf{y}}_{j}\). A large value for \(\tilde{J}\left( {{\mathbf{y}}_{j} } \right)\) means that the data point \({\mathbf{y}}_{j}\) is close to some cluster centers and has many data points around. This function is equivalent to the mountain function proposed in [38]. According to (25), we here provide a tool for analyzing the effect of parameter \(\gamma\) and give a method for a better choice of \(\gamma\) based on \(\tilde{J}\left( {{\mathbf{y}}_{j} } \right)\).

The selection of \(\gamma\) can be solved using a correlation comparison procedure with \(\left( {\gamma = 5,\gamma = 10} \right)\),\(\left( {\gamma = 10,\gamma = 15} \right)\),…etc. We can easily find a good estimate of \(\gamma\) via the density shape estimation concept and the underestimate (small \(\gamma\)) and overestimate (large \(\gamma\)) are undesirable. In order to execute the correlation comparison method as a computer program, (25) is rewritten as

$$\tilde{J}\left( {{\mathbf{y}}_{j} } \right)_{{\gamma_{\kappa } }} = \sum\limits_{i = 1}^{m} {\left( {\exp - \frac{{\left| {{\mathbf{y}}_{i} - {\mathbf{y}}_{j} } \right|}}{\beta }} \right)^{{\gamma_{\kappa } }} } \quad$$
(26)

where \(\gamma_{\kappa } = 5\kappa \quad \kappa = 1,2,3 \ldots\). The correlation comparison method can be summarized as in the Table 5.

Appendix 2

2.1 Maximum Value of \(J\left( {\mathbf{z}} \right)\) Estimation

For estimating the maximum value of \(J\left( {\mathbf{z}} \right)\), first we can estimate the derivative \({{dJ\left( {\mathbf{z}} \right)} \mathord{\left/ {\vphantom {{dJ\left( {\mathbf{z}} \right)} {dz_{iq} }}} \right. \kern-0pt} {dz_{iq} }}\). As we have absolute value \(\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|\), at \(z_{iq} = \tilde{y}_{i} \left( t \right)\), \(J\left( {\mathbf{z}} \right)\) is non differentiable, we can assume that

$$F\left( {z_{iq} } \right) = \left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right| = \left\{ \begin{aligned} \tilde{y}_{i} \left( t \right) - z_{iq} \quad \tilde{y}_{i} \left( t \right) \ge z_{iq} \hfill \\ z_{iq} - \tilde{y}_{i} \left( t \right)\quad \tilde{y}_{i} \left( t \right) < z_{iq} \hfill \\ \end{aligned} \right.$$
(27)

So we have

$${{dF} \mathord{\left/ {\vphantom {{dF} {dz_{iq} }}} \right. \kern-0pt} {dz_{iq} }} = \left\{ \begin{aligned} 1\quad \tilde{y}_{i} \left( t \right) > z_{iq} \hfill \\ - 1\quad \tilde{y}_{i} \left( t \right) < z_{iq} \hfill \\ \end{aligned} \right. = sign\left( {\left( {\tilde{y}_{i} \left( t \right) - z_{iq} } \right)} \right)$$
(28)

Let

$$\frac{{dJ\left( {\mathbf{z}} \right)}}{{dz_{iq} }} = \sum\limits_{t = 1}^{T} { - \frac{\gamma }{\beta }} \left( {\exp \left( { - {{\left( {\sum\limits_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|} } \right)} \mathord{\left/ {\vphantom {{\left( {\sum\limits_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|} } \right)} \beta }} \right. \kern-0pt} \beta }} \right)} \right)^{\gamma } sign\left( {\tilde{y}_{i} \left( t \right) - z_{iq} } \right)$$
(29)

Set \({{dJ} \mathord{\left/ {\vphantom {{dJ} {dz_{iq} }}} \right. \kern-0pt} {dz_{iq} }}\) to zero. As the equation have symbol function, when \(\tilde{y}_{i} \left( t \right) = z_{iq}\), the symbol function was not be determined. Therefore, it was so hard to obtain the expression of \(z_{iq}\). However, the fixed point iterative method can solve this problem.

$$\begin{aligned} \frac{{dJ\left( {\mathbf{z}} \right)}}{{dz_{iq} }} & = \sum\limits_{t = 1}^{T} {\frac{\gamma }{\beta }\left( {\exp \left( { - {{\left( {\sum\limits_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|} } \right)} \mathord{\left/ {\vphantom {{\left( {\sum\limits_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|} } \right)} \beta }} \right. \kern-0pt} \beta }} \right)} \right)^{\gamma } sign\left( {\tilde{y}_{i} \left( t \right) - z_{iq} } \right)} \\ & = \sum\limits_{t = 1}^{T} {\frac{\gamma }{\beta }\left( {\exp \left( { - {{\left( {\sum\limits_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|} } \right)} \mathord{\left/ {\vphantom {{\left( {\sum\limits_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|} } \right)} \beta }} \right. \kern-0pt} \beta }} \right)} \right)^{\gamma } \frac{{\tilde{y}_{i} \left( t \right) - z_{iq} }}{{\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|}}} \\ & = 0 \\ \end{aligned}$$
(30)

We have

$$z_{iq} = \frac{{\sum_{t = 1}^{T} {\left( {\exp \left( { - {{\left( {\sum_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|} } \right)} \mathord{\left/ {\vphantom {{\left( {\sum_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|} } \right)} \beta }} \right. \kern-0pt} \beta }} \right)} \right)^{\gamma } } \frac{{\tilde{y}_{i} \left( t \right)}}{{\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|}}}}{{{{\sum_{t = 1}^{T} {\left( {\exp \left( { - {{\left( {\sum_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|} } \right)} \mathord{\left/ {\vphantom {{\left( {\sum_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|} } \right)} \beta }} \right. \kern-0pt} \beta }} \right)} \right)^{\gamma } } } \mathord{\left/ {\vphantom {{\sum_{t = 1}^{T} {\left( {\exp \left( { - {{\left( {\sum_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|} } \right)} \mathord{\left/ {\vphantom {{\left( {\sum_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|} } \right)} \beta }} \right. \kern-0pt} \beta }} \right)} \right)^{\gamma } } } {\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|}}} \right. \kern-0pt} {\left| {\tilde{y}_{i} \left( t \right) - z_{iq} } \right|}}}}$$
(31)

We can use the iterative algorithm to estimate \(z_{iq}\), the iterative will be stop until \({\mathbf{z}}\) be unchanged. In order to prevented divide by zero, we can add small mount in the equation. The update of \(z_{iq}\) is given as

$$z_{{_{iq} }}^{u + 1} \leftarrow \frac{{\sum\nolimits_{t = 1}^{T} {\left( {\exp \left( { - {{\left( {\sum_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{{_{iq} }}^{u} } \right|} } \right)} \mathord{\left/ {\vphantom {{\left( {\sum_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{{_{iq} }}^{u} } \right|} } \right)} \beta }} \right. \kern-0pt} \beta }} \right)} \right)^{\gamma } \frac{{\tilde{y}_{i} \left( t \right)}}{{\left| {\tilde{y}_{i} \left( t \right) - z_{{_{iq} }}^{u} } \right| + 10^{ - 9} }}} }}{{{{\sum\nolimits_{t = 1}^{T} {\left( {\exp \left( { - {{\left( {\sum_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{{_{iq} }}^{u} } \right|} } \right)} \mathord{\left/ {\vphantom {{\left( {\sum_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{{_{iq} }}^{u} } \right|} } \right)} \beta }} \right. \kern-0pt} \beta }} \right)} \right)^{\gamma } } } \mathord{\left/ {\vphantom {{\sum\nolimits_{t = 1}^{T} {\left( {\exp \left( { - {{\left( {\sum_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{{_{iq} }}^{u} } \right|} } \right)} \mathord{\left/ {\vphantom {{\left( {\sum_{i = 1}^{m} {\left| {\tilde{y}_{i} \left( t \right) - z_{{_{iq} }}^{u} } \right|} } \right)} \beta }} \right. \kern-0pt} \beta }} \right)} \right)^{\gamma } } } {\left| {\tilde{y}_{i} \left( t \right) - z_{{_{iq} }}^{u} } \right| + 10^{ - 9} }}} \right. \kern-0pt} {\left| {\tilde{y}_{i} \left( t \right) - z_{{_{iq} }}^{u} } \right| + 10^{ - 9} }}}}$$
(32)

where \(u\) denotes the number of iteration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, B.Q., Qi, Z.T. & Labitzke, A. A Blind Recognition Algorithm for Real Orthogonal STBC MC-CDMA Underdetermined Systems Based on LPCA and SCA. Wireless Pers Commun 91, 1507–1529 (2016). https://doi.org/10.1007/s11277-016-3543-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3543-y

Keywords

Navigation